IEC SYSTEM FOR MUTUAL RECOGNITION OF TEST CERTIFICATES FOR ELECTRICAL EQUIPMENT (IECEE) CB SCHEME

CB TEST CERTIFICATE

Product

Name and address of the applicant

Name and address of the manufacturer

Name and address of the factory
Note: When more than one factory, please report on page 2

Ratings and principal characteristics

Trademark / Brand (if any)

Customer's Testing Facility (CTF) Stage used

Model / Type Ref.

Additional information (if necessary may also be reported on page 2)

A sample of the product was tested and found to be in conformity with

As shown in the Test Report Ref. No. which forms part of this Certificate

Monitor

LCD Monitor

BenQ Corporation

16 Jihu Road, Neihu, Taipei 114 - TAIWAN

BenQ Corporation
16 Jihu Road, Neihu, Taipei 114 - TAIWAN

【 Additional Information on page 2
$100-240 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 2.5 \mathrm{~A}$

Beno

1

```
IL4301*, IL430*, SS430*, VS430* (* means 0~9, A~Z or blank)
```Additional Information on page 2

IEC 60950-1:2005 +A1:2009 +A2:2013

\section*{CBS2108WDG0169-2}

This CB Test Certificate is issued by the National Certification Body

LABORATOIRE CENTRAL DES INDUSTRIES ELECTRIQUES - LCIE
33 avenue du Général Leclerc
92260 Fontenay-aux-Roses, FRANCE
www.Icie.fr
Date: 12/10/2021

\section*{ANNEX}

\section*{Name and address of the factories:}

Shenzhen KTC Commercial Display Technology CO., LTD
No. 4023, Northern Wuhe Road, Bantian Street, Longgang District, Shenzhen City, Guangdong Province - CHINA

\author{
HUIZHOU KTC TECHNOLOGY CO., LTD. \\ NO. 38 Guangtai Road, Huinan Hi-Tech Industrial Park, Huizhou - CHINA
}

LABORATOIRE CENTRAL DES INDUSTRIES ELECTRIQUES - LCIE
33 avenue du Général Leclerc
92260 Fontenay-aux-Roses, FRANCE
www.Icie.fr

Test Report issued under the responsibility of:

\section*{List of Attachments (including a total number of pages in each attachment):}
- 1 page of TABLE 2.4: limited current circuit measurement
- 17 pages of EUROPEAN GROUP DIFFERENCES
- 55 pages of NATIONAL DIFFERENCE
- 11 pages of photos.

\section*{Summary of testing:}

The equipment under test (EUT) has been evaluated at maximum ambient (Tma) of \(+40^{\circ} \mathrm{C}\) according to the declaration of manufacture.
All tests were measured on model IL4301, under the worst case and the load conditions used during testing is:
- The EUT playing three vertical bar signal under DP mode, to deliver \(1 / 8\) of max. non-clipped output power for two 8 ohm speakers, with max. brightness level, two USB2.0 ports loading 0.5A for each and OPS port loading 90W(18Vdc).

\section*{Tests performed (name of test and test clause):}
- 1.6.2 Input Test
- 1.7.11 Durability of Marking Test
- 2.1.1.5 Energy Hazard Measurements
- 2.4 Limited Current Circuit
- 2.5 Limited Power Source Measurements
- 2.6.3.4, 2.6.1 Earthing Continuity Test
- 2.9.1, 2.9.2, 5.2.2 Humidity Test
- 2.10.3, 2.10.4 Clearance and Creepage Distance Measurements
4.2.1-4.2.4 Steady Force Test
- 4.2.5, 4.2.1 Steel Ball Impact test
- 4.2.10 Mounting Means Loading Test
- 4.3.2 Handles and Knobs Fixing Test
- 4.5.1 Heating (Temperature) Test
- 4.5.5 Ball Pressure Test
- 5.1 Touch Current Test
- 5.2.2 Electric Strength Test
- 5.3 Abnormal and Fault Condition Tests

\section*{Testing location:}

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch
No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, China.

\section*{Summary of compliance with National Differences:}

EU Group Differences, \(\mathrm{AR}^{*}\), \(\mathrm{AU}, \mathrm{AT}^{*}, \mathrm{BH}^{*}, \mathrm{BY}^{*}, \mathrm{BE}^{*}, \mathrm{BR}^{*}, \mathrm{BG}^{*}, \mathrm{CA}, \mathrm{CN}, \mathrm{CO}^{*}, \mathrm{HR}^{*}, \mathrm{CZ}{ }^{*}, \mathrm{DK}, \mathrm{FI}, \mathrm{FR}^{*}, \mathrm{DE}, \mathrm{GR}^{*}\), HU*, IN*, ID*, IE, IL, IT*, JP, KE*, KR, LY*, MY*, MX*, NL*, NZ, NO, PK*, PL*, PT*, RO*, RU*, SA*, RS*, SG, SK* \(^{*}\), SI* \(^{*}\), ZA* \(^{*}\), ES, SE, CH, TH*, TR*, UA, AE*, GB, US.
Explanation of used codes: (\(\mathrm{AR}^{*}=\) Argentina, \(\mathrm{AU}=\) Australia, \(\mathrm{AT}^{*}=\) Austria, \(\mathrm{BH}^{*}=\) Bahrain, \(\mathrm{BY}^{*}=\) Belarus, \(\mathrm{BE}^{*}=\) Belgium, \(\mathrm{BR}^{*}=\) Brazil, \(\mathrm{BG}^{*}=\) Bulgaria, \(\mathrm{CA}=\) Canada, \(\mathrm{CN}=\) China, \(\mathrm{CO}^{*}=\) Colombia, \(\mathrm{HR}^{*}=\) Croatia, \(\mathrm{CZ}^{*}=\) Czech Republic, \(\mathrm{DK}=\) Denmark, \(\mathrm{FI}=\) Finland, \(\mathrm{FR}^{*}=\) France, \(\mathrm{DE}=\) Germany, \(\mathrm{GR}^{*}=\) Greece, \(\mathrm{HU}^{*}=\) Hungary, \(\mathrm{IN}^{*}=I n d i a, ~ I D *=\) Indonesia, IE=Ireland, IL=Israel, IT*= Italy, JP=Japan, \(\mathrm{KE}^{*}=\) Kenya, \(\mathrm{KR}=\) Korea, \(\mathrm{LY}^{*}=\) Libian Arab Jamahiriya, \(\mathrm{MY}^{*}=\) Malaysia, \(\mathrm{MX}^{*}=\) Mexico, \(\mathrm{NL}^{*}=\) Netherlands, \(\mathrm{NZ}=\) New Zealand, \(\mathrm{NO}=\) Norway, \(\mathrm{PK}^{*}=\) Pakistan, \(\mathrm{PL}^{*}=\) Poland, \(\mathrm{PT}^{*}=\) Portugal, \(\mathrm{RO}^{*}=\) Romania, \(\mathrm{RU}^{*}=\) Russina Federation, \(\mathrm{SA}^{*}=\) Saudi Arabia, RS*=Serbia, \(\mathrm{SG}=\) Singapore, SK*=Slovakia, SI*=Slovenia, ZA*=South Africa, ES=Spain, SE=Sweden, \(\mathrm{CH}=\) Switzerland, \(\mathrm{TH}^{*}=\) Thailand, \(T R^{*}=\) Turkey, UA=Ukraine, \(\mathrm{AE}^{*}=\) United Arab Emirates, GB=United Kingdom, US=United States of America) *The requirements for these countries have also been checked and found no national differences from the IEC 60950-1:2005 (Second Edition) + Am 1:2009 + Am 2:2013 standard.
\(\boxtimes\) The product fulfils the requirements of EN 60950-1:2006 + A11: \(2009+\) A1: \(2010+\) A12: \(2011+\) A2: 2013

\section*{Copy of marking plate:}

The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks.
The below marking is only for representative. The official marking plate of all models is only different from format of label, model number for trading purpose.

Notes:

WEEE logo(crossed-out wheeled bin symbol with solid bar): at least 7 mm in height
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Test item particulars..} \\
\hline \begin{tabular}{l}
Equipment mobility \(\qquad\) \\
Connection to the mains \(\qquad\)
\end{tabular} & \begin{tabular}{l}
[] movable [] hand-held [] transportable [X] stationary [] for building-in [] direct plug-in \\
[X] pluggable equipment [X] type A [] type B [] permanent connection \\
[X] detachable power supply cord \\
[] non-detachable power supply cord \\
[] not directly connected to the mains
\end{tabular} \\
\hline Operating condition & [X] continuous [] rated operating / resting time: \\
\hline \begin{tabular}{l}
Access location \(\qquad\) \\
Over voltage category (OVC) \(\qquad\) \\
Mains supply tolerance (\%) or absolute mains supply values \(\qquad\) \\
Tested for IT power systems
\end{tabular} & \begin{tabular}{l}
[X] operator accessible [] restricted access location \\
[] OVC I [X] OVC II [] OVC III [] OVC IV [] other: \\
\(\pm 10 \%\)
\end{tabular} \\
\hline \begin{tabular}{l}
IT testing, phase-phase voltage (V) \\
Class of equipment \(\qquad\) \\
Considered current rating of protective device as part of the building installation (A) \(\qquad\) \\
Pollution degree (PD) \(\qquad\) \\
IP protection class \(\qquad\) \\
Altitude during operation (m) \(\qquad\) \\
Altitude of test laboratory (m) \(\qquad\) \\
Mass of equipment (kg)
\end{tabular} & \begin{tabular}{l}
230 Vac \\
[X] Class I [] Class II [] Class III [] Not classified 16A; 20A for US and Canada \\
[] PD 1 [X]PD 2 []PD 3 \\
IPXO \\
Below 5000 m \\
Below 2000 m \\
Approximate 18.8 kg excludes power cord set
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Possible test case verdicts: \\
- test case does not apply to the test object \(\qquad\) : N/A \\
- test object does meet the requirement \(\qquad\) : P (Pass) \\
- test object does not meet the requirement \(\qquad\) : F (Fail)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Testing \(\qquad\) \\
Date of receipt of test item. \(\qquad\) : August 13, 2021 \\
Date (s) of performance of tests \(\qquad\) : August 13, 2021 to Sep. 10, 2021
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{General remarks:} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
"(See Enclosure \#)" refers to additional information appended to the report. \\
"(See appended table)" refers to a table appended to the report. \\
Throughout this report a \(\square\) comma / \(\boxtimes\) point is used as the decimal separator.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Manufacturer's Declaration per sub-clause 4.2.5 of IECEE 02:} \\
\hline The application for obtaining a CB Test Certificate includes more than one factory location and a declaration from the Manufacturer stating that the sample(s) submitted for evaluation is (are) representative of the products from each factory has been provided.. & Yes
Not applicable \\
\hline
\end{tabular}

Name and address of factory (ies) \(\qquad\) .:
1. Shenzhen KTC Commercial Display Technology CO., LTD
No. 4023, Northern Wuhe Road, Bantian Street, Longgang District, Shenzhen City, Guangdong Province, P.R. China
2. HUIZHOU KTC TECHNOLOGY CO., LTD.

NO. 38 GUANGTAI ROAD, HUINAN HI-TECH INDUSTRIAL PARK, HUIZHOU, CHINA

\section*{General product information:}
1. The equipment is an "LCD Monitor" which has built-in certificated power supply and one remote controller which supplied by two "AAA" size carbon-zinc or alkaline batteries.
2. The equipment with an approved power cord set complied with the national regulations of the countries in where the appliance is to be sold.
3. Physical Size: approx. \(1015 \mathrm{~mm} \times 597 \mathrm{~mm} \times 97 \mathrm{~mm}\).
4. The equipment has two 8 ohm speakers, may be operated under HDMI mode or DP mode or VGA mode, USB mode or Network mode, two USB2.0 ports loading 0.5A for each and OPS port can be loading 90W (18Vdc).
5. The equipment or accessories which will be connected to OPS port, shall comply with the requirements of applicable clause for standard IEC 60950-1 and must block the OPS port after installation.
6. There are two power supply boards in the equipment which model MP135TL-2N33-K2 and model MP120DM-18
7. The equipment with models IL4301*, IL430*, SS430* and VS430*(* means 0~9, A~Z or blank) are identical to each other except the appearance color and printing and model name for trading purpose.

\section*{Abbreviations used in the report:}
\begin{tabular}{llll}
- normal conditions & N.C. & - single fault conditions & S.F.C \\
- functional insulation & OP & - basic insulation & BI \\
- double insulation & DI & - supplementary insulation & SI \\
\begin{tabular}{l}
between parts of opposite \\
polarity
\end{tabular} & BOP & - reinforced insulation & RI \\
Indicate used abbreviations (if any) & &
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline 1 & GENERAL & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 1.5 & \multicolumn{2}{|l|}{Components} & P \\
\hline 1.5.1 & General & Components, which were found to affect safety aspects, are conformed to the relevant IEC component standards and/or comply with the requirements of this standard. & P \\
\hline & Comply with IEC 60950-1 or relevant component standard & (See appended table 1.5.1) & P \\
\hline 1.5.2 & Evaluation and testing of components & \begin{tabular}{l}
Components which are certified to IEC and/or national standards are used correctly within their ratings. \\
Components not covered by IEC standards are tested under the conditions presented in the equipment.
\end{tabular} & P \\
\hline 1.5.3 & Thermal controls & No thermal controls used. & N/A \\
\hline 1.5.4 & Transformers & Evaluated in the test report of power supply & P \\
\hline 1.5.5 & Interconnecting cables & Interconnecting cable for Interconnection is carrying only SELV voltages on an energy level below 240 VA . & P \\
\hline 1.5.6 & Capacitors bridging insulation & Approved capacitor used & P \\
\hline 1.5.7 & Resistors bridging insulation & See below. & P \\
\hline 1.5.7.1 & Resistors bridging functional, basic or supplementary insulation & Functional insulation bridged by resistors which is protected by fuse. & P \\
\hline 1.5.7.2 & Resistors bridging double or reinforced insulation between a.c. mains and other circuits & No such components. & N/A \\
\hline 1.5.7.3 & Resistors bridging double or reinforced insulation between a.c. mains and antenna or coaxial cable & No such components. & N/A \\
\hline 1.5.8 & Components in equipment for IT power systems & Evaluated in the test report of power supply & P \\
\hline 1.5.9 & Surge suppressors & See below & P \\
\hline 1.5.9.1 & General & Evaluated in the test report of power supply & P \\
\hline 1.5.9.2 & Protection of VDRs & Evaluated in the test report of power supply. & P \\
\hline 1.5.9.3 & Bridging of functional insulation by a VDR & Evaluated in the test report of power supply & P \\
\hline 1.5.9.4 & Bridging of basic insulation by a VDR & No such construction & N/A \\
\hline 1.5.9.5 & Bridging of supplementary, double or reinforced insulation by a VDR & No such construction & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 1.6 & Power interface & TN, IT or TT power system. & P \\
\hline 1.6 .1 & AC power distribution systems & (see appended table 1.6.2) & P \\
\hline 1.6 .2 & Input current & \begin{tabular}{l}
The equipment is not hand-held \\
equipment.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 1.6 .3 & Voltage limit of hand-held equipment & Complied & P \\
\hline 1 & Neutral conductor &
\end{tabular}

\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{|l|l|l|c|}
\hline 1.7 .14 & Equipment for restricted access locations: & \begin{tabular}{l}
No for use in the restricted \\
access location.
\end{tabular} & N/A \\
\hline
\end{tabular}}
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 2 & \multicolumn{2}{|l|}{PROTECTION FROM HAZARDS} & P \\
\hline 2.1 & \multicolumn{2}{|l|}{Protection from electric shock and energy hazards} & P \\
\hline 2.1.1 & Protection in operator access areas & See below. & P \\
\hline \multirow[t]{5}{*}{2.1.1.1} & Access to energized parts & No access with test finger and test pin to any parts with hazards parts. & P \\
\hline & Test by inspection ... : & See below. & P \\
\hline & Test with test finger (Figure 2A) & The test finger unable to contact bare hazardous parts & P \\
\hline & Test with test pin (Figure 2B) & The test pin was unable to contact bare hazardous parts & P \\
\hline & Test with test probe (Figure 2C) & No TNV circuit inside the EUT. & N/A \\
\hline 2.1.1.2 & Battery compartments & No TNV circuit inside the EUT. & N/A \\
\hline \multirow[t]{2}{*}{2.1.1.3} & Access to ELV wiring & No ELV wiring in operator accessible area. & N/A \\
\hline & Working voltage (Vpeak or Vrms); minimum distance through insulation (mm) & & - \\
\hline 2.1.1.4 & Access to hazardous voltage circuit wiring & No hazardous voltage wiring in operator accessible area. & N/A \\
\hline 2.1.1.5 & Energy hazards ... : & See appended tables 2.1.1.5 & P \\
\hline 2.1.1.6 & Manual controls & No such device. & N/A \\
\hline \multirow[t]{2}{*}{2.1.1.7} & Discharge of capacitors in equipment & See below & P \\
\hline & Measured voltage (V); time-constant (s).............. : & \begin{tabular}{l}
For power supply board model MP135TL-2N33-K2: \\
Measured voltage is 0 V at 1 s . Max. votage is 373 V , and \(37 \%\) of max. voltage is 138 V \\
For power supply board model MP120DM-18: \\
Measured voltage is 35 V at 1 s . Max. votage is 394 V , and \(37 \%\) of max. voltage is 146 V
\end{tabular} & - \\
\hline \multirow[t]{3}{*}{2.1.1.8} & Energy hazards - d.c. mains supply & This product is not intended to be connected to d.c. mains supply. & N/A \\
\hline & a) Capacitor connected to the d.c. mains supply ..: & This product is not intended to be connected to d.c. mains supply. & N/A \\
\hline & b) Internal battery connected to the d.c. mains supply & This product is not intended to be connected to d.c. mains supply. & N/A \\
\hline 2.1.1.9 & Audio amplifiers ... : & Considered & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{3}{|c|}{ IEC 60950-1 } & Result - Remark
\end{tabular} Verdict \begin{tabular}{|l|l|c|}
\hline Clause & Requirement + Test & \begin{tabular}{l}
The unintentional contact to the \\
hazardous parts is unlikely for \\
the service person.
\end{tabular} \\
\hline 2.1.2 & Protection in service access areas & \begin{tabular}{l}
It is not intended to be used in \\
restricted locations.
\end{tabular} \\
\hline 2.1.3 & Protection in restricted access locations & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 2.2 & SELV circuits & See below & P \\
\hline 2.2 .1 & General requirements & Voltages under normal conditions (V): & \begin{tabular}{l}
42.4V peak or 60Vd.c. are not \\
exceeded in SELV circuit under \\
normal operation. \\
See appended table 2.2.
\end{tabular} \\
\hline 2.2 .2 & P \\
\hline 2.2 .3 & Voltages under fault conditions (V): & \begin{tabular}{l}
The transformer output had \\
been evaluated in the test report \\
of power supply, see appended \\
table 2.2 for the output of power \\
supply except LED terminals, \\
the LED terminals are not \\
accessible
\end{tabular} & P \\
\hline 2.2 .4 & Connection of SELV circuits to other circuits: & \begin{tabular}{l}
SELV circuit is only connected \\
to SELV circuit and limited \\
current circuits.
\end{tabular} & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 2.3 & TNV circuits & See below & N/A \\
\hline 2.3 .1 & Limits & N/A \\
\hline & Type of TNV circuits...: & No TNV circuit & - \\
\hline 2.3 .2 & \begin{tabular}{l}
Separation from other circuits and from accessible \\
parts
\end{tabular} & No TNV circuit & N/A \\
\hline 2.3 .2 .1 & General requirements & No TNV circuit & N/A \\
\hline 2.3 .2 .2 & Protection by basic insulation & No TNV circuit & N/A \\
\hline 2.3 .2 .3 & Protection by earthing & No TNV circuit & N/A \\
\hline 2.3 .2 .4 & Protection by other constructions: & No TNV circuit & N/A \\
\hline 2.3 .3 & Separation from hazardous voltages & No TNV circuit & N/A \\
\hline & Insulation employed: & & - \\
\hline 2.3 .4 & Connection of TNV circuits to other circuits & No TNV circuit & N/A \\
\hline & Insulation employed ...: & & - \\
\hline 2.3 .5 & Test for operating voltages generated externally & No TNV circuit & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 2.4 & Limited current circuits & See below & \(P\) \\
\hline 2.4 .1 & General requirements & See table 2.4 & P \\
\hline 2.4 .2 & Limit values & P \\
\hline & Frequency \((\mathrm{Hz}) \ldots .: ~\) & & - \\
\hline & Measured current \((\mathrm{mA}) . ~\) & & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|c|}
\hline & Measured voltage (V).. & & - \\
\hline & Measured circuit capacitance (nF or \(\mu \mathrm{F}\)) : & & - \\
\hline 2.4 .3 & Connection of limited current circuits to other circuits & Complied & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 2.5 & \multicolumn{3}{|l|}{ Limited power sources } \\
\hline & a) Inherently limited output & No such circuit. & P \\
\hline & b) Impedance limited output & No such circuit. & N/A \\
\hline & \begin{tabular}{l}
c) Regulating network or IC current limiter, limits \\
output under normal operating and single fault \\
condition
\end{tabular} & \begin{tabular}{l}
Considered all output terminals, \\
details see appended table 2.5
\end{tabular} & P \\
\hline & Use of integrated circuit (IC) current limiters & No such component. & N/A \\
\hline & d) Overcurrent protective device limited output & No such component. & N/A \\
\hline & \begin{tabular}{l}
Max. output voltage (V), max. output current (A), max. \\
apparent power (VA)..................................:
\end{tabular} & \begin{tabular}{l}
The result see appended table \\
2.5.
\end{tabular} & - \\
\hline & Current rating of overcurrent protective device (A) .: & & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 2.6 & \multicolumn{2}{|l|}{Provisions for earthing and bonding} & P \\
\hline 2.6.1 & Protective earthing & The earth conductor has screw terminal and ring to dedicated terminal & P \\
\hline \multirow[t]{2}{*}{2.6.2} & Functional earthing & No functional earthing & N/A \\
\hline & Use of symbol for functional earthing: & No functional earthing & N/A \\
\hline 2.6.3 & Protective earthing and protective bonding conductors & Provided with a reliable earth connection & P \\
\hline 2.6.3.1 & General & See below & P \\
\hline \multirow[t]{2}{*}{2.6.3.2} & Size of protective earthing conductors & See below & P \\
\hline & Rated current (A), cross-sectional area (mm²), AWG & See appended table 1.5.1 & - \\
\hline \multirow[t]{3}{*}{2.6.3.3} & Size of protective bonding conductors & See below & P \\
\hline & Rated current (A), cross-sectional area (\(\mathrm{mm}^{2}\)), AWG & Evaluated by earthing continuity test. & - \\
\hline & Protective current rating (A), cross-sectional area (\(\mathrm{mm}^{2}\)), AWG. & Evaluated by earthing continuity test. & - \\
\hline 2.6.3.4 & Resistance of earthing conductors and their terminations; resistance (\(\Omega\)), voltage drop (V), test current (A), duration (min). \(\qquad\) & \begin{tabular}{l}
Between PE pin of appliance inlet and the farthest metal enclosure: \\
Resistance: 0.007ohm, Voltage drop: 0.23 V , test current: 32A, Duration: 2minutes Resistance: 0.008 ohm , Voltage drop: 0.32 V , test current: 40A, Duration: 2minutes
\end{tabular} & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 2.6.3.5 & Colour of insulation ..: & Green- and-yellow earth wire used & P \\
\hline 2.6.4 & Terminals & See below & P \\
\hline 2.6.4.1 & General & Protective earthing terminal complied. & P \\
\hline \multirow[t]{2}{*}{2.6.4.2} & Protective earthing and bonding terminals & See below & P \\
\hline & Rated current (A), type, nominal thread diameter (mm) & Evaluated by earthing continuity test. & - \\
\hline 2.6.4.3 & Separation of the protective earthing conductor from protective bonding conductors & The equipment provided with an appliance inlet. & P \\
\hline 2.6.5 & Integrity of protective earthing & See below & P \\
\hline 2.6.5.1 & Interconnection of equipment & No such equipment & N/A \\
\hline 2.6.5.2 & Components in protective earthing conductors and protective bonding conductors & The protective earthing conductors and protective bonding conductors have contained no components. & P \\
\hline 2.6.5.3 & Disconnection of protective earth & When disconnected the protective earth, the equipment also disconnected from mains via approved power cord at the same time. & P \\
\hline 2.6.5.4 & Parts that can be removed by an operator & An appliance coupler used. & P \\
\hline 2.6.5.5 & Parts removed during servicing & Protective earthing connections disconnected with the removal of relevant hazard part at the same time. & P \\
\hline 2.6.5.6 & Corrosion resistance & Cadmium on steel used for screw terminal and ring & P \\
\hline 2.6.5.7 & Screws for protective bonding & The screw is threaded into the metal part at a minimum thickness of 1.0 mm for a screw of the thread-forming type. & P \\
\hline 2.6.5.8 & Reliance on telecommunication network or cable distribution system & No such connection. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|c|}
\hline 2.7 & Overcurrent and earth fault protection in primary circuits & P \\
\hline 2.7 .1 & Basic requirements & \begin{tabular}{l}
Protection in primary circuits \\
against over currents provided \\
as an integral part of the \\
equipment.
\end{tabular} & P \\
\hline & \begin{tabular}{l}
Instructions when protection relies on building \\
installation
\end{tabular} & No such construction & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.7 .2 & Faults not simulated in 5.3 .7 & Considered. & P \\
\hline 2.7 .3 & Short-circuit backup protection & \begin{tabular}{l}
The building installation is \\
considered as providing short \\
circuit backup protection.
\end{tabular} & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \(2.4|l| l \mid\) \\
\hline 2.7.4 & Number and location of protective devices: & \begin{tabular}{l}
The protective device is located \\
adequately. It is able to interrupt \\
the overcurrent flowing in any \\
possible fault current path.
\end{tabular} & P \\
\hline 2.7 .5 & Protection by several devices & No such construction & N/A \\
\hline 2.7 .6 & Warning to service personnel: & No such construction & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 2.8 & Safety interlocks & \begin{tabular}{l}
No any hazards in the meaning \\
of standard at operator access \\
areas.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .1 & General principles & \begin{tabular}{l}
There is no safety interlock in \\
the equipment.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .2 & Protection requirements & & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .3 & Inadvertent reactivation & & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .4 & Fail-safe operation & & \(\mathrm{N} / \mathrm{A}\) \\
\hline & Protection against extreme hazard & & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .5 & Moving parts & & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .6 & Overriding & & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .7 & Switches, relays and their related circuits & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .7 .1 & \begin{tabular}{l}
Separation distances for contact gaps and their \\
related circuits (mm) :
\end{tabular} & & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .7 .2 & Overload test & & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .7 .3 & Endurance test & & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .7 .4 & Electric strength test & & \(\mathrm{N} / \mathrm{A}\) \\
\hline 2.8 .8 & Mechanical actuators & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 2.9 & Electrical insulation & \begin{tabular}{l}
Natural rubber, asbestos or \\
hygroscopic materials are not \\
used.
\end{tabular} & P \\
\hline 2.9 .1 & Properties of insulating materials & See below. & P \\
\hline 2.9 .2 & Humidity conditioning & Relative humidity (\%), temperature (\({ }^{\circ} \mathrm{C}\)): & \begin{tabular}{l}
Performed at \(95 \%\) R.H., \(40^{\circ} \mathrm{C}\), \\
for 120 hours.
\end{tabular} \\
\hline 2.9.3 & Grade of insulation & \begin{tabular}{l}
Insulations are considered to be \\
functional, basic insulation, \\
supplementary insulation and \\
reinforced insulation.
\end{tabular} & P \\
\hline 2.9 .4 & Separation from hazardous voltages & \begin{tabular}{l}
Basic insulation provided \\
between earthed metal \\
enclosure and primary parts. \\
Reinforce or double insulation \\
provided between secondary \\
terminals, panel and primary \\
parts.
\end{tabular} & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|l|l|l|}
\hline & Method(s) used ...: & \begin{tabular}{l}
Method 1 item b) and Method 2 \\
item d) used.
\end{tabular} \\
\hline
\end{tabular}}} & \\
\hline & & & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 2.10 & \multicolumn{2}{|l|}{Clearances, creepage distances and distances through insulation} & P \\
\hline 2.10 .1 & General & See below. & P \\
\hline 2.10.1.1 & Frequency ...: & Evaluated in the test report of power supply & P \\
\hline 2.10.1.2 & Pollution degrees ... & The EUT considered the pollution degree 2. & P \\
\hline 2.10.1.3 & Reduced values for functional insulation & Considered 5.3.4 c). & P \\
\hline 2.10.1.4 & Intervening unconnected conductive parts & Considered. & P \\
\hline 2.10.1.5 & Insulation with varying dimensions & Not applicable. & N/A \\
\hline 2.10.1.6 & Special separation requirements & Special separation is not used. & N/A \\
\hline 2.10.1.7 & Insulation in circuits generating starting pulses & No such circuit in the equipment. & N/A \\
\hline 2.10.2 & Determination of working voltage & (See appended table 2.10.2) & P \\
\hline 2.10.2.1 & General & See below. & P \\
\hline 2.10.2.2 & RMS working voltage & (See appended table 2.10.2) & P \\
\hline 2.10.2.3 & Peak working voltage & (See appended table 2.10.2) & P \\
\hline 2.10 .3 & Clearances & See below & P \\
\hline 2.10.3.1 & General & Considered. & P \\
\hline 2.10.3.2 & Mains transient voltages & See below. & P \\
\hline & a) AC mains supply .. : & Equipment is overvoltage Category II. & P \\
\hline & b) Earthed d.c. mains supplies : & This EUT is not intended to be connected to d.c. mains & N/A \\
\hline & c) Unearthed d.c. mains supplies : & This EUT is not intended to be connected to d.c. mains & N/A \\
\hline & d) Battery operation .. & The equipment is not intended to be supplied by the battery. & N/A \\
\hline 2.10.3.3 & Clearances in primary circuits & (See appended table 2.10.3 and 2.10.4) & P \\
\hline 2.10.3.4 & Clearances in secondary circuits & See sub-clause 5.3.4. & P \\
\hline 2.10.3.5 & Clearances in circuits having starting pulses & No such circuit. & N/A \\
\hline 2.10.3.6 & Transients from a.c. mains supply : & Considered. & P \\
\hline 2.10.3.7 & Transients from d.c. mains supply: & The EUT is not intended to be connected to the d.c. mains. & N/A \\
\hline 2.10.3.8 & Transients from telecommunication networks and cable distribution systems & The EUT is not intended to be connected to telecommunication networks and cable distribution systems & N/A \\
\hline 2.10.3.9 & Measurement of transient voltage levels & See below. & N/A \\
\hline & a) Transients from a mains supply & Measurement method not used. & N/A \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \[
2.10 .5 .13
\] & Wire with solvent-based enamel in wound components & No such construction. & N/A \\
\hline & Electric strength test & & - \\
\hline & Routine test & & N/A \\
\hline \multirow[t]{2}{*}{2.10.5.14} & Additional insulation in wound components & No such construction. & N/A \\
\hline & Working voltage .. : & No such construction. & N/A \\
\hline & - Basic insulation not under stress : & No such construction. & N/A \\
\hline & - Supplementary, reinforced insulation: & No such construction. & N/A \\
\hline 2.10 .6 & Construction of printed boards & See below. & P \\
\hline 2.10.6.1 & Uncoated printed boards & See appended table 2.10.3 and 2.10.4 & P \\
\hline 2.10.6.2 & Coated printed boards & No such printed board used. & N/A \\
\hline 2.10.6.3 & Insulation between conductors on the same inner surface of a printed board & No such printed board used. & N/A \\
\hline 2.10.6.4 & Insulation between conductors on different layers of a printed board & No such printed board used. & N/A \\
\hline & Distance through insulation & No such printed board used. & N/A \\
\hline & Number of insulation layers (pcs): & No such printed board used. & N/A \\
\hline 2.10 .7 & Component external terminations & No such construction. & N/A \\
\hline 2.10.8 & Tests on coated printed boards and coated components & No such construction. & N/A \\
\hline 2.10.8.1 & Sample preparation and preliminary inspection & No such construction. & N/A \\
\hline 2.10.8.2 & Thermal conditioning & No such construction. & N/A \\
\hline 2.10.8.3 & Electric strength test & No such construction. & N/A \\
\hline 2.10.8.4 & Abrasion resistance test & No such construction. & N/A \\
\hline 2.10 .9 & Thermal cycling & The test was unnecessary. & N/A \\
\hline 2.10 .10 & Test for Pollution Degree 1 environment and insulating compound & No such component. & N/A \\
\hline 2.10 .11 & Tests for semiconductor devices and cemented joints & No such construction. & N/A \\
\hline 2.10 .12 & Enclosed and sealed parts & No hermetically sealed component. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 3 & WIRING, CONNECTIONS AND SUPPLY & P \\
\hline 3.1 & General & \begin{tabular}{l}
lnternal wiring gauge is suitable \\
for current intended to be \\
carried.
\end{tabular} & P \\
\hline 3.1.1 & Current rating and overcurrent protection & \begin{tabular}{l}
Wire ways are smooth and free \\
from edges. Wires are \\
adequately fixed to prevent \\
excessive strain on wire
\end{tabular} & P \\
\hline 3.1.2 & Protection against mechanical damage & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 3.1.3 & Securing of internal wiring & Internal wiring is secured against excessive strain, loosening of terminals and damage to the conductor insulation. & P \\
\hline 3.1.4 & Insulation of conductors & The insulation of the individual conductors is suitable for the application and the working voltage. & P \\
\hline 3.1.5 & Beads and ceramic insulators & No such insulator used & N/A \\
\hline 3.1.6 & Screws for electrical contact pressure & No such screws used & N/A \\
\hline 3.1.7 & Insulating materials in electrical connections & No non-metallic materials used in electrical connections. & P \\
\hline 3.1.8 & Self-tapping and spaced thread screws & No self-tapping screws used in electrical connections. & P \\
\hline 3.1.9 & Termination of conductors & All conductors are reliable secured. & P \\
\hline & 10 N pull test & 10 N force performed for all relevant conductors. No hazards caused. & P \\
\hline 3.1.10 & Sleeving on wiring & No such part & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 3.2 & \multicolumn{2}{|l|}{Connection to a mains supply} & P \\
\hline 3.2.1 & Means of connection & See below. & P \\
\hline 3.2.1.1 & Connection to an a.c. mains supply & The equipment provides certified appliance inlet for connection of approved detachable power supply cord. & P \\
\hline 3.2.1.2 & Connection to a d.c. mains supply & The equipment is not for connection to a d.c. mains supply. & N/A \\
\hline 3.2.2 & Multiple supply connections & Only for one supply connection. & N/A \\
\hline 3.2.3 & Permanently connected equipment & Not permanently connected equipment. & N/A \\
\hline & Number of conductors, diameter of cable and conduits (mm) \(\qquad\) & & - \\
\hline 3.2.4 & Appliance inlets & Approved inlet used & P \\
\hline 3.2.5 & Power supply cords & See below & P \\
\hline 3.2.5.1 & AC power supply cords & Approved detachable power cord used & P \\
\hline & Type ...: & See appended table 1.5.1 & - \\
\hline & Rated current (A), cross-sectional area (\(\mathrm{mm}^{2}\)), AWG & See appended table 1.5.1 & - \\
\hline 3.2.5.2 & DC power supply cords & The equipment is not for connection to d.c. mains supply. & N/A \\
\hline 3.2.6 & Cord anchorages and strain relief & Detachable power cord used & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline & Mass of equipment (kg), pull (N): & & - \\
\hline & Longitudinal displacement (mm): & & - \\
\hline 3.2.7 & Protection against mechanical damage & No sharp points or cutting edges on the equipment surfaces. & P \\
\hline 3.2.8 & Cord guards & Detachable power cord used & N/A \\
\hline & Diameter or minor dimension \(\mathrm{D}(\mathrm{mm})\); test mass (g) & & - \\
\hline & Radius of curvature of cord (mm): & & - \\
\hline 3.2.9 & Supply wiring space & Not permanent connection or non-detachable power cord type. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 3.3 & \multicolumn{2}{|l|}{ Wiring terminals for connection of external conductors } & N/A \\
\hline 3.3 .1 & Wiring terminals & Detachable power cord used & N/A \\
\hline 3.3 .2 & Connection of non-detachable power supply cords & No wiring terminals & N/A \\
\hline 3.3 .3 & Screw terminals & No wiring terminals & N/A \\
\hline 3.3 .4 & Conductor sizes to be connected & No wiring terminals & N/A \\
\hline & \begin{tabular}{l}
Rated current (A), cord/cable type, cross-sectional \\
area (mm \({ }^{2}\)) ...:
\end{tabular} & & - \\
\hline 3.3 .5 & Wiring terminal sizes & No wiring terminals & N/A \\
\hline & \begin{tabular}{l}
Rated current (A), type, nominal thread diameter \\
\((m m) ~ \ldots . ~\)
\end{tabular} & & - \\
\hline 3.3 .6 & Wiring terminal design & No wiring terminals & N/A \\
\hline 3.3 .7 & Grouping of wiring terminals & No wiring terminals & N/A \\
\hline 3.3 .8 & Stranded wire & Not stranded wire used & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 3.4 & Disconnection from the mains supply & See clause 3.4.2 & P \\
\hline 3.4 .1 & General requirement & \begin{tabular}{l}
Mains plug was used as \\
disconnected device.
\end{tabular} & P \\
\hline 3.4 .2 & Disconnect devices & \begin{tabular}{l}
The EUT is not permanently \\
connected equipment
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 3.4 .3 & Permanently connected equipment & No parts remain energized. & \(\mathrm{N} / \mathrm{A}\) \\
\hline 3.4 .4 & Parts which remain energized & \begin{tabular}{l}
The switch doesn't be fitted in \\
flexible cord
\end{tabular} & P \\
\hline 3.4 .5 & Switches in flexible cords & \begin{tabular}{l}
The disconnect device \\
disconnects both poles \\
simultaneously.
\end{tabular} & P \\
\hline 3.4 .6 & Number of poles - single-phase and d.c. equipment & \\
\hline 3.4 .7 & Number of poles - three-phase equipment & Single phase equipment & \(\mathrm{N} / \mathrm{A}\) \\
\hline 3.4 .8 & Switches as disconnect devices & \begin{tabular}{l}
The switch not be considered \\
as disconnect device
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{3}{|c|}{ IEC 60950-1 } & Result - Remark \\
\hline Clause & Requirement + Test & \begin{tabular}{l}
Verdict
\end{tabular} \\
\hline 3.4 .9 & Plugs as disconnect devices & \begin{tabular}{l}
The main plug will be regarded \\
as disconnect device, warning \\
is provided in user manual.
\end{tabular} & P \\
\hline 3.4 .10 & Interconnected equipment & \begin{tabular}{l}
Interconnected to other device \\
by secondary SELV terminal \\
only.
\end{tabular} & N/A \\
\hline 3.4 .11 & Multiple power sources & \begin{tabular}{l}
Only one supply connection \\
provided.
\end{tabular} & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 3.5 & Interconnection of equipment & See below & P \\
\hline 3.5 .1 & General requirements & \begin{tabular}{l}
Only SELV and Limited current \\
circuit were used as \\
interconnection circuit.
\end{tabular} & P \\
\hline 3.5 .2 & Types of interconnection circuits: & No ELV interconnection circuits. & \(\mathrm{N} / \mathrm{A}\) \\
\hline 3.5 .3 & ELV circuits as interconnection circuits & \begin{tabular}{l}
The data ports complies with \\
LPS requirements, see \\
appended table 2.5.
\end{tabular} & P \\
\hline 3.5 .4 & Data ports for additional equipment & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 4 & PHYSICAL REQUIREMENTS & P \\
\hline 4.1 & Stability & \begin{tabular}{l}
The EUT is used by mounting \\
wall.
\end{tabular} & N/A \\
\hline & Angle of \(10^{\circ}\) & Not floor-standing equipment. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 4.2 & Mechanical strength & See below. & P \\
\hline 4.2 .1 & General & Not rack-mounted equipment. & \(\mathrm{N} / \mathrm{A}\) \\
\hline & Rack-mounted equipment. & No safety relevant damaged & P \\
\hline 4.2 .2 & Steady force test, 10 N & \begin{tabular}{l}
No door or cover in an operator \\
access area.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 4.2 .3 & Steady force test, 30 N & \begin{tabular}{l}
250N applied to outer \\
enclosure. No energy or other \\
hazards.
\end{tabular} & P \\
\hline 4.2 .4 & Steady force test, 250 N & See below & P \\
\hline 4.2 .5 & Impact test & \begin{tabular}{l}
After test, no safety relevant \\
damages.
\end{tabular} & P \\
\hline & Fall test & \begin{tabular}{l}
After test, no safety relevant \\
damages.
\end{tabular} & P \\
\hline 4.2 .6 & Drop test; height \((\mathrm{mm})\)......................................: & See clause 4.2.5 & \(\mathrm{N} / \mathrm{A}\) \\
\hline 4.2 .7 & Stress relief test & \begin{tabular}{l}
Not used thermoplastic \\
materials for enclosure
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 4.2 .8 & Cathode ray tubes & No CRT inside the EUT. & \(\mathrm{N} / \mathrm{A}\) \\
\hline & Picture tube separately certified: & No CRT inside the EUT. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{3}{|c|}{ IEC 60950-1 } & Result - Remark \\
\hline Clause & Requirement + Test & No high pressure lamps. & N/A \\
\hline 4.2 .9 & High pressure lamps & Wall or ceiling mounted equipment; force (N): & \begin{tabular}{l}
Applied additional force 553N \\
for 1 minute and no damage \\
after test
\end{tabular} \\
\hline 4.2 .10 & & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 4.3 & Design and construction & \begin{tabular}{l}
Edges and corners of the \\
enclosure are rounded.
\end{tabular} & P \\
\hline 4.3 .1 & Edges and corners & \begin{tabular}{l}
P \\
equipment, applied force 50N \\
for 1 minute on each handle \\
and no damage after test.
\end{tabular} & P \\
\hline 4.3 .2 & Handles and manual controls; force (N): & \begin{tabular}{l}
Two handles provided on the \\
equ
\end{tabular} & No similar controls.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|l|}{} \\
\hline & Quantity of liquid (I) .. : & No flammable liquids in the equipment. & N/A \\
\hline & Flash point (\({ }^{\circ} \mathrm{C}\)) .. & No flammable liquids in the equipment. & N/A \\
\hline 4.3.13 & Radiation & See clause 4.3.13.5. & P \\
\hline 4.3.13.1 & General & No risk of harmful effects of radiation & P \\
\hline 4.3.13.2 & Ionizing radiation & No ionizing radiation. & N/A \\
\hline & Measured radiation (pA/kg) & -- & - \\
\hline & Measured high-voltage (kV) & -- & - \\
\hline & Measured focus voltage (kV) & -- & - \\
\hline & CRT markings ...: & -- & - \\
\hline \multirow[t]{2}{*}{4.3.13.3} & Effect of ultraviolet (UV) radiation on materials & No UV radiation. & N/A \\
\hline & Part, property, retention after test, flammability classification \(\qquad\) & No UV radiation. & N/A \\
\hline 4.3.13.4 & Human exposure to ultraviolet (UV) radiation : & No UV radiation. & N/A \\
\hline 4.3.13.5 & Lasers (including laser diodes) and LEDs & See below & P \\
\hline \multirow[t]{2}{*}{4.3.13.5.1} & Lasers (including laser diodes) & No such devices. & N/A \\
\hline & Laser class .. & -- & - \\
\hline 4.3.13.5.2 & Light emitting diodes (LEDs) & The LEDs used for indicating, which are considered as low power application, need not comply with IEC 62471 & - \\
\hline 4.3.13.6 & Other types ..: & No other type of source inside the EUT. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 4.4 & Protection against hazardous moving parts & \begin{tabular}{l}
No hazardous moving part in \\
operator access areas.
\end{tabular} & N/A \\
\hline 4.4 .1 & General & Protection in operator access areas: & \begin{tabular}{l}
No hazardous moving part in \\
operator access areas.
\end{tabular} \\
\hline 4.4 .2 & \begin{tabular}{l}
Household and home/office document/media \\
shredders
\end{tabular} & No such equipment \\
\hline 4.4 .3 & Protection in restricted access locations: & \begin{tabular}{l}
No hazardous moving in the \\
service access area
\end{tabular} & N/A \\
\hline 4.4 .4 & Protection in service access areas & \begin{tabular}{l}
No hazardous part in operator \\
access areas.
\end{tabular} & N/A \\
\hline 4.4 .5 & Protection against moving fan blades & No moving fan blades used & N/A \\
\hline 4.4 .5 .1 & General & No moving fan blades used & N/A \\
\hline & Not considered to cause pain or injury. a)...........: & & N/A \\
\hline & Is considered to cause pain, not injury. b): & & N/A \\
\hline & Considered to cause injury. & c): & \\
\hline 4.4 .5 .2 & Protection for users & No moving fan blades used & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|l|}{} \\
\hline & Use of symbol or warning: & & N/A \\
\hline 4.4.5.3 & Protection for service persons & No moving fan blades used & N/A \\
\hline & Use of symbol or warning: & & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 4.5 & Thermal requirements & Considered & P \\
\hline 4.5 .1 & General & (see appended table 4.5) & P \\
\hline 4.5 .2 & Temperature tests & Normal load condition per Annex L: & \begin{tabular}{l}
See operation condition under \\
"Summary of testing".
\end{tabular} \\
\hline & - & (see appended table 4.5) & P \\
\hline 4.5 .3 & Temperature limits for materials & (see appended table 4.5) & P \\
\hline 4.5 .4 & Touch temperature limits & Resistance to abnormal heat: & \begin{tabular}{l}
The phenolic materials used for \\
the transformer which is \\
accepted without the further \\
testing. see appended table \\
4.5 .5 \\
material. pluggable connector
\end{tabular} \\
\hline 4.5 .5 & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 4.6 & \multicolumn{2}{|l|}{Openings in enclosures} & P \\
\hline 4.6.1 & Top and side openings & The openings do not exceed 5 mm in any dimension, see below & P \\
\hline & Dimensions (mm) ...: & Many cirulars with Max. \(\Phi 3.0 \mathrm{~mm}\) diameter on the rear side. & - \\
\hline 4.6.2 & Bottoms of fire enclosures & See below & P \\
\hline & Construction of the bottomm, dimensions (mm) ..: & Many cirulars with Max. \(\Phi 2.0 \mathrm{~mm}\) diameter on the Bottom Openings, the spacing of holes centre to centre is min. 4.0 mm . & - \\
\hline 4.6.3 & Doors or covers in fire enclosures & No such part & N/A \\
\hline 4.6.4 & Openings in transportable equipment & Not transportable equipment & N/A \\
\hline 4.6.4.1 & Constructional design measures & Not transportable equipment & N/A \\
\hline & Dimensions (mm) ..: & & - \\
\hline 4.6.4.2 & Evaluation measures for larger openings & Not transportable equipment & N/A \\
\hline 4.6.4.3 & Use of metallized parts & Not transportable equipment & N/A \\
\hline 4.6.5 & Adhesives for constructional purposes & Approved adhesives used & P \\
\hline & Conditioning temperature (\({ }^{\circ} \mathrm{C}\)), time (weeks)........ & & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline 4.7 & Resistance to fire & P \\
\hline 4.7 .1 & Reducing the risk of ignition and spread of flame & See below. \\
P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline & \begin{tabular}{l}
Method 1, selection and application of components \\
wiring and materials
\end{tabular} & \begin{tabular}{l}
Selection of components for the \\
simulation of faults with \\
acceptable results, and use of \\
materials with the required \\
flammability class.
\end{tabular} & P \\
\hline & \begin{tabular}{l}
Method 2, application of all of simulated fault \\
condition tests
\end{tabular} & Method 1 used. & \(\mathrm{N} / \mathrm{A}\) \\
\hline 4.7 .2 & Conditions for a fire enclosure & See below. & P \\
\hline 4.7 .2 .1 & Parts requiring a fire enclosure & \begin{tabular}{l}
The fire enclosure is required to \\
cover all parts
\end{tabular} & P \\
\hline 4.7.2.2 & Parts not requiring a fire enclosure & Fire enclosure is necessary & \(\mathrm{N} / \mathrm{A}\) \\
\hline 4.7 .3 & Materials & \begin{tabular}{l}
Component and material had \\
adequate flammability \\
classification, see table 1.5.1 for \\
details.
\end{tabular} & P \\
\hline 4.7 .3 .1 & General & Metal enclosure used & P \\
\hline 4.7.3.2 & Materials for fire enclosures & No such parts & \(\mathrm{N} / \mathrm{A}\) \\
\hline 4.7 .3 .3 & \begin{tabular}{l}
Materials for components and other parts outside \\
fire enclosures
\end{tabular} & \begin{tabular}{l}
Materials for components and other parts inside fire \\
enclosures
\end{tabular} & \begin{tabular}{l}
Rated V-1 or better PCB \\
material used
\end{tabular} \\
\hline 4.7.3.4 & No air filter provided. & P \\
\hline 4.7 .3 .5 & Materials for air filter assemblies & \begin{tabular}{l}
No high-voltage component \\
inside the equipment.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 4.7.3.6 & Materials used in high-voltage components & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \(\mathbf{5}\) & \multicolumn{3}{|l|}{ ELECTRICAL REQUIREMENTS AND SIMULATED ABNORMAL CONDITIONS } \\
\hline 5.1 & \multicolumn{2}{|l|}{ Touch current and protective conductor current } & P \\
\hline 5.1 .1 & General & & P \\
\hline 5.1 .2 & Configuration of equipment under test (EUT) & See below. & P \\
\hline 5.1 .2 .1 & Single connection to an a.c. mains supply & Considered. & P \\
\hline 5.1 .2 .2 & \begin{tabular}{l}
Redundant multiple connections to an a.c. mains \\
supply
\end{tabular} & \begin{tabular}{l}
Only single connection to an \\
a.c. mains supply.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 5.1 .2 .3 & \begin{tabular}{l}
Simultaneous multiple connections to an a.c. mains \\
supply
\end{tabular} & \begin{tabular}{l}
Only single connection to an \\
a.c. mains supply.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 5.1 .3 & Test circuit & Figure 5A used & P \\
\hline 5.1 .4 & Application of measuring instrument & \begin{tabular}{l}
Using measuring instrument in \\
Annex D.
\end{tabular} & P \\
\hline 5.1 .5 & Test procedure & Considered. & P \\
\hline 5.1 .6 & Test measurements & Considered. & P \\
\hline & Supply voltage (V) ..: & 264 Vac & - \\
\hline & Measured touch current \((\mathrm{mA}) .: ~\) & See appended table 5.1 & - \\
\hline & Max. allowed touch current (mA) & \begin{tabular}{l}
0.25 mA (unearthed) \\
3.5 mA (earthed)
\end{tabular} & - \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|c|}
\hline 5.2 & Electric strength & P \\
\hline 5.2 .1 & General & See appended table 5.2 & P \\
\hline 5.2 .2 & Test procedure & See appended table 5.2 & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 5.3 & Abnormal operating and fault conditions & P \\
\hline 5.3 .1 & Protection against overload and abnormal operation & (see appended table 5.3) & P \\
\hline 5.3 .2 & Motors & No motor used & \(\mathrm{N} / \mathrm{A}\) \\
\hline 5.3 .3 & Transformers & \begin{tabular}{l}
See appended table 5.3 and \\
Annex C.
\end{tabular} & P \\
\hline 5.3 .4 & Functional insulation ...: & \begin{tabular}{l}
Method c) used. Result see \\
appended table 5.3
\end{tabular} & P \\
\hline 5.3 .5 & Electromechanical components & \begin{tabular}{l}
No electromechanical \\
component.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 5.3 .6 & Audio amplifiers in ITE: & Considered & P \\
\hline 5.3 .7 & Simulation of faults & See appended table 5.3 & P \\
\hline 5.3 .8 & Unattended equipment & No such components used & \(\mathrm{N} / \mathrm{A}\) \\
\hline 5.3 .9 & \begin{tabular}{l}
Compliance criteria for abnormal operating and fault \\
conditions
\end{tabular} & See below. & P \\
\hline 5.3 .9 .1 & During the tests & \begin{tabular}{l}
No flame in the equipment. No \\
molten metal was emitted.
\end{tabular} & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \begin{tabular}{|l|l|l|c|}
\hline 5.3 .9 .2 & After the tests & \begin{tabular}{l}
No reduction of clearance and \\
creepage distance. \\
Electric strength test: Primary to \\
SELV, primary to metal \\
enclosure and panel were \\
passed.
\end{tabular} & P \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline 6 & CONNECTION TO TELECOMMUNICATION NETWORKS & N/A \\
\hline 6.1 & \begin{tabular}{l}
Protection of telecommunication network service persons, and users of other \\
equipment connected to the network, from hazards in the equipment
\end{tabular} & N/A \\
\hline 6.1 .1 & Protection from hazardous voltages & N/A \\
\hline 6.1 .2 & Separation of the telecommunication network from earth & N/A \\
\hline 6.1 .2 .1 & Requirements & No TNV circuit. \\
\hline & Supply voltage (V) ...: & \\
N/A \\
\hline & Current in the test circuit (mA): & \\
\hline 6.1 .2 .2 & Exclusions .. & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 6.2 & \begin{tabular}{l}
Protection of equipment users from overvoltages on telecommunication \\
networks
\end{tabular} & N/A \\
\hline 6.2 .1 & Separation requirements & No TNV circuit. & N/A \\
\hline 6.2 .2 & Electric strength test procedure & No TNV circuit. & N/A \\
\hline 6.2 .2 .1 & Impulse test & No TNV circuit. & N/A \\
\hline 6.2 .2 .2 & Steady-state test & No TNV circuit. & N/A \\
\hline 6.2 .2 .3 & Compliance criteria & No TNV circuit. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 6.3 & Protection of the telecommunication wiring system from overheating & N/A \\
\hline & Max. output current (A): & \begin{tabular}{l}
The EUT is not intended to \\
supply other units via \\
telecommunication line.
\end{tabular} & - \\
\hline & Current limiting method: & & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 7 & CONNECTION TO CABLE DISTRIBUTION SYSTEMS & N/A \\
\hline 7.1 & General & \begin{tabular}{l}
Not connected to the cable \\
distribution system.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 7.2 & \begin{tabular}{l}
Protection of cable distribution system service \\
persons, and users of other equipment connected to \\
the system, from hazardous voltages in the \\
equipment
\end{tabular} & \begin{tabular}{l}
Not connected to the cable \\
distribution system.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 7.3 & \begin{tabular}{l}
Protection of equipment users from overvoltages on \\
the cable distribution system
\end{tabular} & \begin{tabular}{l}
Not connected to the cable \\
distribution system.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 7.4 & \begin{tabular}{l}
Insulation between primary circuits and cable \\
distribution systems
\end{tabular} & \begin{tabular}{l}
Not connected to the cable \\
distribution system.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline 7.4 .1 & General & \begin{tabular}{l}
Not connected to the cable \\
distribution system.
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{3}{|c|}{ IEC 60950-1 } & Result - Remark
\end{tabular} Verdict \begin{tabular}{|l|l|c|}
\hline Clause & Requirement + Test & \begin{tabular}{l}
Not connected to the cable \\
distribution system.
\end{tabular} \\
\hline 7.4 .2 & Voltage surge test & \begin{tabular}{l}
Not connected to the cable \\
distribution system.
\end{tabular} \\
\hline 7.4 .3 & Impulse test & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline A & \multicolumn{2}{|l|}{ANNEX A, TESTS FOR RESISTANCE TO HEAT AND FIRE} & N/A \\
\hline A. 1 & Flammability test for fire enclosures of movable equipment having a total mass exceeding 18 kg , and of stationary equipment (see 4.7.3.2) & Metal enclosure used & N/A \\
\hline A.1.1 & Samples ...: & & - \\
\hline & Wall thickness (mm)..: & & - \\
\hline A.1.2 & Conditioning of samples; temperature (\({ }^{\circ} \mathrm{C}\)) & & N/A \\
\hline A.1.3 & Mounting of samples & & N/A \\
\hline A.1.4 & Test flame (see IEC 60695-11-3) & & N/A \\
\hline & Flame A, B, C or D ... & & - \\
\hline A.1.5 & Test procedure & & N/A \\
\hline A.1.6 & Compliance criteria & & N/A \\
\hline & Sample 1 burning time (s)................................. & & - \\
\hline & Sample 2 burning time (s)................................ : & & - \\
\hline & Sample 3 burning time (s)................................ : & & - \\
\hline A. 2 & \multicolumn{2}{|l|}{Flammability test for fire enclosures of movable equipment having a total mass not exceeding 18 kg , and for material and components located inside fire enclosures (see 4.7.3.2 and 4.7.3.4)} & N/A \\
\hline A.2. 1 & Samples, material ..: & & - \\
\hline & Wall thickness (mm)....................................... & & - \\
\hline A.2.2 & Conditioning of samples; temperature (\({ }^{\circ} \mathrm{C}\)) & & N/A \\
\hline A.2.3 & Mounting of samples: & & N/A \\
\hline A.2.4 & Test flame (see IEC 60695-11-4) & & N/A \\
\hline & Flame A, B or C .. : & & - \\
\hline A.2.5 & Test procedure & & N/A \\
\hline A.2.6 & Compliance criteria & & N/A \\
\hline & Sample 1 burning time (s)................................. & & - \\
\hline & Sample 2 burning time (s)................................ : & & - \\
\hline & Sample 3 burning time (s)................................ & & - \\
\hline A.2.7 & Alternative test acc. to IEC 60695-11-5, cl. 5 and 9 & & N/A \\
\hline & Sample 1 burning time (s)............................... : & & - \\
\hline & Sample 2 burning time (s)................................ : & & - \\
\hline & Sample 3 burning time (s)................................ & & - \\
\hline A. 3 & Hot flaming oil test (see 4.6.2) & & N/A \\
\hline A.3.1 & Mounting of samples & & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{3}{|c|}{ IEC 60950-1 } & Result - Remark \\
\hline Clause & Requirement + Test & & Verdict \\
\hline A.3.2 & Test procedure & & N/A \\
\hline A.3.3 & Compliance criterion & & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline B & \multicolumn{2}{|l|}{ANNEX B, MOTOR TESTS UNDER ABNORMAL CONDITIONS (see 4.7.2.2 and 5.3.2)} & N/A \\
\hline B. 1 & General requirements & See below & N/A \\
\hline & Position ...: & No motor used & - \\
\hline & Manufacturer ... : & No motor used & - \\
\hline & Type .. : & No motor used & - \\
\hline & Rated values ..: & No motor used & - \\
\hline B. 2 & Test conditions & No motor used & N/A \\
\hline B. 3 & Maximum temperatures & No motor used & N/A \\
\hline B. 4 & Running overload test & & N/A \\
\hline B. 5 & Locked-rotor overload test & & N/A \\
\hline & Test duration (days) .. & & - \\
\hline & Electric strength test: test voltage (V) & & - \\
\hline B. 6 & Running overload test for d.c. motors in secondary circuits & No motor used & N/A \\
\hline B.6.1 & General & & N/A \\
\hline B.6.2 & Test procedure & & N/A \\
\hline B.6.3 & Alternative test procedure & & N/A \\
\hline B.6.4 & Electric strength test; test voltage (V) : & & N/A \\
\hline B. 7 & Locked-rotor overload test for d.c. motors in secondary circuits & No motor used & N/A \\
\hline B.7.1 & General & & N/A \\
\hline B.7.2 & Test procedure & & N/A \\
\hline B.7.3 & Alternative test procedure & & N/A \\
\hline B.7.4 & Electric strength test; test voltage (V) : & & N/A \\
\hline B. 8 & Test for motors with capacitors & No such motor used. & N/A \\
\hline B. 9 & Test for three-phase motors & No such motor used. & N/A \\
\hline B. 10 & Test for series motors & No such motor used. & N/A \\
\hline & Operating voltage (V) : & & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & \multicolumn{2}{|l|}{ANNEX C, TRANSFORMERS (see 1.5.4 and 5.3.3)} & P \\
\hline & Position ... : & Transformer used on the certificated power supply & - \\
\hline & Manufacturer .. : & Evaluated in the test report of power supply & - \\
\hline & Type ... : & & - \\
\hline & Rated values ... : & & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{3}{|c|}{ IEC 60950-1 } & Result - Remark \\
\hline Clause & Requirement + Test & Verdict \\
\hline & Method of protection ...: : & & - \\
\hline C. \(\mathbf{y}\) & Overload test & See appended table 5.3 & P \\
\hline C.2 & Insulation & \begin{tabular}{l}
Evaluated in the test report of \\
power supply
\end{tabular} & P \\
\hline & Protection from displacement of windings: & & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline D & \multicolumn{1}{|l|}{\begin{tabular}{l}
ANNEX D, MEASURING INSTRUMENTS FOR TOUCH-CURRENT TESTS \\
(see 5.1.4)
\end{tabular}} & P \\
\hline D.1 & Measuring instrument & \begin{tabular}{l}
Measuring instrument D.1 is \\
used
\end{tabular} & P \\
\hline D.2 & Alternative measuring instrument & & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline E & ANNEX E, TEMPERATURE RISE OF A WINDING (see 1.4.13) & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline F & \begin{tabular}{l}
ANNEX F, MEASUREMENT OF CLEARANCES AND CREEPAGE DISTANCES \\
(see 2.10 and Annex G)
\end{tabular} & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline G & \multicolumn{2}{|l|}{ANNEX G, ALTERNATIVE METHOD FOR DETERMINING MINIMUM CLEARANCES} & N/A \\
\hline G. 1 & Clearances & Not used. & N/A \\
\hline G.1.1 & General & Not used. & N/A \\
\hline G.1.2 & Summary of the procedure for determining minimum clearances & Not used. & N/A \\
\hline G. 2 & Determination of mains transient voltage (V) & Not used. & N/A \\
\hline G.2.1 & AC mains supply .. : & & N/A \\
\hline G.2.2 & Earthed d.c. mains supplies: & & N/A \\
\hline G.2.3 & Unearthed d.c. mains supplies : & & N/A \\
\hline G.2.4 & Battery operation .. : & & N/A \\
\hline G. 3 & Determination of telecommunication network transient voltage (V) \(\qquad\) & Not used. & N/A \\
\hline G. 4 & Determination of required withstand voltage (V) & Not used. & N/A \\
\hline G.4.1 & Mains transients and internal repetitive peaks: & & N/A \\
\hline G.4.2 & Transients from telecommunication networks: & & N/A \\
\hline G.4.3 & Combination of transients & & N/A \\
\hline G.4.4 & Transients from cable distribution systems & & N/A \\
\hline G. 5 & Measurement of transient voltages (V) & Not used. & N/A \\
\hline & a) Transients from a mains supply & & N/A \\
\hline & For an a.c. mains supply & & N/A \\
\hline & For a d.c. mains supply & & N/A \\
\hline & b) Transients from a telecommunication network & & N/A \\
\hline G. 6 & Determination of minimum clearances: & Not used. & N/A \\
\hline
\end{tabular}

IEC 60950-1
\begin{tabular}{|l|l|l|l|}
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline H & ANNEX H, IONIZING RADIATION (see 4.3.13) & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline J & \multicolumn{2}{|l|}{ANNEX J, TABLE OF ELECTROCHEMICAL POTENTIALS (see 2.6.5.6)} & P \\
\hline & Metal(s) used ..: & Cadmium on steel used for screw terminal and ring & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline K & \multicolumn{2}{|l|}{ANNEX K, THERMAL CONTROLS (see 1.5.3 and 5.3.8)} & N/A \\
\hline K. 1 & Making and breaking capacity & No thermal control in the EUT. & N/A \\
\hline K. 2 & Thermostat reliability; operating voltage (V) & No thermal control in the EUT. & N/A \\
\hline K. 3 & Thermostat endurance test; operating voltage (V) & No thermal control in the EUT. & N/A \\
\hline K. 4 & Temperature limiter endurance; operating voltage (V) & No thermal control in the EUT. & N/A \\
\hline K. 5 & Thermal cut-out reliability & No thermal control in the EUT. & N/A \\
\hline K. 6 & Stability of operation & No thermal control in the EUT. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline L & \multicolumn{2}{|l|}{ANNEX L, NORMAL LOAD CONDITIONS FOR SOME TYPES OF ELECTRICAL BUSINESS EQUIPMENT (see 1.2.2.1 and 4.5.2)} & P \\
\hline L. 1 & Typewriters & No such device in the EUT. & N/A \\
\hline L. 2 & Adding machines and cash registers & No such device in the EUT. & N/A \\
\hline L. 3 & Erasers & No such device in the EUT. & N/A \\
\hline L. 4 & Pencil sharpeners & No such device in the EUT. & N/A \\
\hline L. 5 & Duplicators and copy machines & No such device in the EUT. & N/A \\
\hline L. 6 & Motor-operated files & No such device in the EUT. & N/A \\
\hline L. 7 & Other business equipment & See operation condition under "Summary of testing". & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline M & ANNEX M, CRITERIA FOR TELEPHONE RINGING SIGNALS (see 2.3.1) & N/A \\
\hline M.1 & Introduction & \begin{tabular}{l}
No phone ringing is generated \\
in the EUT.
\end{tabular} & N/A \\
\hline M.2 & Method A & & N/A \\
\hline M.3 & Method B & & N/A \\
\hline M.3.1 & Ringing signal & & N/A \\
\hline M.3.1.1 & Frequency (Hz) ..: & & - \\
\hline M.3.1.2 & Voltage (V) ...: & & - \\
\hline M.3.1.3 & Cadence; time (s), voltage (V): & & - \\
\hline M.3.1.4 & Single fault current (mA): & & - \\
\hline M.3.2 & Tripping device and monitoring voltage: & & N/A \\
\hline M.3.2.1 & \begin{tabular}{l}
Conditions for use of a tripping device or a \\
monitoring voltage
\end{tabular} & & N/A \\
\hline M.3.2.2 & Tripping device & & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline M.3.2.3 & Monitoring voltage (V) : & & N/A \\
\hline N & \multicolumn{2}{|l|}{ANNEX N, IMPULSE TEST GENERATORS (see 1.5.7.2, 1.5.7.3, 2.10.3.9, 6.2.2.1, 7.3.2, 7.4.3 and Clause G.5)} & N/A \\
\hline N. 1 & ITU-T impulse test generators & Not used. & N/A \\
\hline N. 2 & IEC 60065 impulse test generator & Not used. & N/A \\
\hline P & \multicolumn{2}{|l|}{ANNEX P, NORMATIVE REFERENCES} & - \\
\hline Q & \multicolumn{2}{|l|}{ANNEX Q, Voltage dependent resistors (VDRs) (see 1.5.9.1)} & P \\
\hline & - Preferred climatic categories: & Evaluated in the test report of power supply & P \\
\hline & - Maximum continuous voltage : & & P \\
\hline & - Combination pulse current & & P \\
\hline & \begin{tabular}{l}
Body of the VDR \\
Test according to IEC60695-11-5.
\end{tabular} & & P \\
\hline & \begin{tabular}{l}
Body of the VDR. \\
Flammability class of material (min V-1).
\end{tabular} & & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline R & \multicolumn{1}{|l|}{\begin{tabular}{l}
ANNEX R, EXAMPLES OF REQUIREMENTS FOR QUALITY CONTROL \\
PROGRAMMES
\end{tabular}} & N/A \\
\hline R.1 & \begin{tabular}{l}
Minimum separation distances for unpopulated \\
coated printed boards (see 2.10.6.2)
\end{tabular} & Not used. & N/A \\
\hline R.2 & Reduced clearances (see 2.10.3) & Not used. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline S & ANNEX S, PROCEDURE FOR IMPULSE TESTING (see 6.2.2.3) & N/A \\
\hline S.1 & Test equipment & Not used. & N/A \\
\hline S.2 & Test procedure & Not used. & N/A \\
\hline S.3 & Examples of waveforms during impulse testing & Not used. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline T & \begin{tabular}{l}
ANNEX T, GUIDANCE ON PROTECTION AGAINST INGRESS OF WATER \\
(see 1.1.2)
\end{tabular} & N/A \\
\hline & & IPX0 & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline U & \multicolumn{1}{|l|}{\begin{tabular}{l}
ANNEX U, INSULATED WINDING WIRES FOR USE WITHOUT INTERLEAVED \\
INSULATION (see 2.10.5.4)
\end{tabular}} & P \\
\hline & & Approved triple insulated wire & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline V & ANNEX V, AC POWER DISTRIBUTION SYSTEMS (see 1.6.1) & P \\
\hline V.1 & Introduction & See below & P \\
\hline V.2 & TN power distribution systems & See clause 1.6.1 & P \\
\hline
\end{tabular}

IEC 60950-1
Clause
Requirement + Test
Result - Remark
Verdict
\begin{tabular}{|l|l|l|c|}
\hline W & ANNEX W, SUMMATION OF TOUCH CURRENTS & & N/A \\
\hline W.1 & Touch current from electronic circuits & & N/A \\
\hline W.1.1 & Floating circuits & & N/A \\
\hline W.1.2 & Earthed circuits & & N/A \\
\hline W.2 & Interconnection of several equipments & & N/A \\
\hline W.2.1 & Isolation & & N/A \\
\hline W.2.2 & Common return, isolated from earth & & N/A \\
\hline W.2.3 & Common return, connected to protective earth & & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \(\mathbf{X}\) & \multicolumn{1}{|l|}{\begin{tabular}{l}
ANNEX X, MAXIMUM HEATING EFFECT IN TRANSFORMER TESTS (see clause \\
\(\mathbf{C . 1})\)
\end{tabular}} & P \\
\hline X .1 & Determination of maximum input current & See Annex C & P \\
\hline X .2 & Overload test procedure & \begin{tabular}{l}
Electronic protection mode is \\
used
\end{tabular} & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Y & \multicolumn{2}{|l|}{ANNEX Y, ULTRAVIOLET LIGHT CONDITIONING TEST (see 4.3.13.3)} & N/A \\
\hline Y. 1 & Test apparatus ...: & Not used. & N/A \\
\hline Y. 2 & Mounting of test samples: & Not used. & N/A \\
\hline Y. 3 & Carbon-arc light-exposure apparatus: & Not used. & N/A \\
\hline Y. 4 & Xenon-arc light exposure apparatus: & Not used. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline\(Z\) & ANNEX Z, OVERVOLTAGE CATEGORIES (see 2.10.3.2 and Clause G.2) & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline AA & ANNEX AA, MANDREL TEST (see 2.10.5.8) & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline BB & \multicolumn{2}{|l|}{ANNEX BB, CHANGES IN THE SECOND EDITION} & - \\
\hline CC & \multicolumn{2}{|l|}{ANNEX CC, Evaluation of integrated circuit (IC) current limiters} & N/A \\
\hline CC. 1 & General & & N/A \\
\hline CC. 2 & Test program 1..: & & N/A \\
\hline CC. 3 & Test program 2..: & & N/A \\
\hline CC. 4 & Test program 3.............................: & & N/A \\
\hline CC. 5 & Compliance...............................: & & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DD & \multicolumn{2}{|l|}{ANNEX DD, Requirements for the mounting means of rack-mounted equipment} & N/A \\
\hline DD. 1 & General & No such construction. & N/A \\
\hline DD. 2 & Mechanical strength test, variable N...................: & No such construction. & N/A \\
\hline DD. 3 & Mechanical strength test, 250 N , including end stops. & No such construction. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline DD. 4 & Compliance...: & No such construction. & N/A \\
\hline EE & \multicolumn{2}{|l|}{ANNEX EE, Household and home/office document/media shredders} & N/A \\
\hline EE. 1 & General & Not such equipment & N/A \\
\hline EE. 2 & Markings and instructions & Not such equipment & N/A \\
\hline & Use of markings or symbols............................: & Not such equipment & N/A \\
\hline & Information of user instructions, maintenance and/or servicing instructions. & Not such equipment & N/A \\
\hline EE. 3 & Inadvertent reactivation test............................: & Not such equipment & N/A \\
\hline EE. 4 & Disconnection of power to hazardous moving parts: & Not such equipment & N/A \\
\hline & Use of markings or symbols............................: & Not such equipment & N/A \\
\hline EE. 5 & Protection against hazardous moving parts & Not such equipment & N/A \\
\hline & Test with test finger (Figure 2A): & Not such equipment & N/A \\
\hline & Test with wedge probe (Figure EE1 and EE2): & Not such equipment & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1.5.1 TA & \multicolumn{4}{|l|}{TABLE: List of critical components} & P \\
\hline Object/part No. & Manufacturer/ trademark & Type/model & Technical data & Standard (Edition / year) & Mark(s) of conformity \({ }^{1}\)) \\
\hline Metal enclosure & -- & -- & Measured thickness is min .1 .0 mm & IEC 60950-1 & Tested with appliance \\
\hline Metal enclosure outside on the OPS port & -- & -- & Measured thickness is min .0 .60 mm & IEC 60950-1 & Tested with appliance \\
\hline Plastic material used for OPS model & Sabic Japan L L C & \[
\begin{aligned}
& \text { 420SEO(f2)(w) } \\
& (\mathrm{GG})(\mathrm{rr2})
\end{aligned}
\] & V- \(0,130^{\circ} \mathrm{C}\), required thickness is min. 0.71 mm , measured thickness is min. 0.75 mm & UL 94 & UL \\
\hline Or & Toray Industries Inc & \[
\begin{aligned}
& 1164 \mathrm{G}-30 \text { (ri) } \\
& \text { (f2) }
\end{aligned}
\] & V-0, \(130^{\circ} \mathrm{C}\), required thickness is min. 0.75 mm , measured thickness is min. 0.75 mm & UL 94 & UL \\
\hline Panel & SHENZHEN KTC COMMERCIAL DISPLAY TECHNOLOGY CO., LTD & K430WD93 & 43 inch, TFT-LCD, display resolution: \(3840 * 2160\) & IEC 60950-1 & Tested with appliance \\
\hline \begin{tabular}{l}
Power plug \\
(EU type)
\end{tabular} & I-Sheng Electric Wire \& Cable Co., Ltd. & SP-023 & \(16 \mathrm{~A}, 250 \mathrm{Vac}\) & VDE 0620-2-1 & VDE \\
\hline Or & Shenzhen G-CINDA Power Solution Co., Ltd. & GXD-012 & \(16 \mathrm{~A}, 250 \mathrm{Vac}\) & VDE 0620-2-1 & VDE \\
\hline Or & Interchangeable & -- & Min. 10A, min. 250 Vac & VDE 0620-2-1 & VDE or other cert. marking \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating} \\
\hline Power plug (UK type) & I-Sheng Electric Wire \& Cable Company Limited & SP-62 & 10A, 250 Vac & BS 1363-1 & (cvc \\
\hline Or & Shenzhen G-CINDA Power Solution Co., Ltd. & GXD-018 & 13A, 250 Vac & BS 1363-1 & ASTA \\
\hline Or & Interchangeable & -- & Min. 10A, min. 250 Vac & BS 1363-1 & BSI or other cert. marking \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating} \\
\hline Power cord & I-Sheng Electric Wire \& Cable Company Limited & H05VV-F & \[
\begin{aligned}
& 3 \times 0.75 \mathrm{~mm}^{2}, \text { or } \\
& 3 \times 1 \mathrm{~mm}^{2}
\end{aligned}
\] & EN 50525-2-11 & VDE \\
\hline Or & Shenzhen G-CINDA Power Solution Co., Ltd. & H05VV-F & \[
\begin{aligned}
& 3 \times 0.75 \mathrm{~mm}^{2}, \\
& 3 \times 1 \mathrm{~mm}^{2}
\end{aligned}
\] & EN 50525-2-11 & VDE \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Or & Interchangeable & -- & \[
\begin{aligned}
& 3 \times 0.75 \mathrm{~mm}^{2}, \\
& 3 \times 1 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { IEC/EN 50525- } \\
& 2-11
\end{aligned}
\] & VDE or other cert. marking \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating} \\
\hline Appliance connector & I-Sheng Electric Wire \& Cable Co., Ltd. & IS-14N & 10A, 250Vac & \[
\begin{aligned}
& \text { EN 60320-1, } \\
& \text { EN 60320-3 }
\end{aligned}
\] & ENEC \\
\hline Or & Shenzhen G-CINDA Power Solution Co., Ltd. & DRF-005 & 10A, 250Vac & IEC 60320-1 & VDE \\
\hline Or & Interchangeable & -- & 10A, 250Vac & IEC/EN 60320-1 & VDE or other cert. marking \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating} \\
\hline Double-sides tape with adhesive & Interchangeable & -- & Indoor use, \(\min 80^{\circ} \mathrm{C}\) & UL 746C & UL \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating and same combination surfaces.} \\
\hline Appliance inlet & Steady Electronics Corporation & 2107 & \(10 \mathrm{~A}, 250 \mathrm{Vac}, 70^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { UL498, } \\
& \text { IEC 60320-1 }
\end{aligned}
\] & UL, VDE \\
\hline Or & Zhe Jiang Bei Er Jia Electronic Co., Ltd. & \[
\begin{aligned}
& \text { ST-A01-001L, } \\
& \text { ST-A01-002L, } \\
& \text { ST-A01-003J, } \\
& \text { ST-A01-003K }
\end{aligned}
\] & \(10 \mathrm{~A}, 250 \mathrm{Vac}, 70^{\circ} \mathrm{C}\) & \[
\begin{array}{|l}
\hline \text { UL498, } \\
\text { IEC 60320-1 }
\end{array}
\] & UL, VDE \\
\hline Or & Zhe Jiang Bei ErJia Electronic Co. Ltd. & \begin{tabular}{l}
ST-A01-003JC, \\
ST-A01-003JD, \\
ST-A01-003JE, \\
ST-A01-003JK, \\
ST-A01-003JL
\end{tabular} & 10A, \(250 \mathrm{Vac}, 70^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { UL 498, } \\
& \text { IEC 60320-1 }
\end{aligned}
\] & UL, VDE \\
\hline Or & \begin{tabular}{l}
Zhejiang LECI \\
Electronics Co., Ltd
\end{tabular} & \[
\begin{aligned}
& \text { DB-14, } \\
& \text { DB-14-1, } \\
& \text { DB-14-2, } \\
& \text { DB-14-3, } \\
& \text { DB-14-5, } \\
& \text { DB-14-6, } \\
& \text { DB-14-7, } \\
& \text { DB-14-8, } \\
& \text { DB-14-10 }
\end{aligned}
\] & 10A, \(250 \mathrm{Vac}, 70^{\circ} \mathrm{C}\) & IEC 60320-1 & VDE \\
\hline Or & Yueqing Yanhui Electronic Co., Ltd & DB-14 & 10A, \(250 \mathrm{Vac}, 70^{\circ} \mathrm{C}\) & IEC 60320-1 & VDE \\
\hline Or & Interchangeable & -- & Min. 10A, min. 250Vac, \(\min .70^{\circ} \mathrm{C}\) & \[
\begin{array}{|l}
\hline \text { UL498, } \\
\text { IEC/EN 60320-1 }
\end{array}
\] & UL, VDE or other cert. marking \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating} \\
\hline Power switch & \begin{tabular}{l}
Zhejiang LECI \\
Electronics Co., Ltd.
\end{tabular} & RS601 series & 6(4)A, \(250 \mathrm{Vac}, 85^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { UL 1054, } \\
& \text { IEC 61058-1 }
\end{aligned}
\] & UL, VDE \\
\hline Or & Zhe Jiang Bei Er Jia Electronic Co., Ltd. & PS8A-11 & 12(4)A 250Vac, \(105^{\circ} \mathrm{C}\) & UL 1054, IEC 61058-1 & UL, VDE \\
\hline Or & Zhe Jiang BeiErJia Electronic Co., Ltd. & PS8A Series & \[
\begin{aligned}
& \text { 6(4)A, } 250 \mathrm{Vac}, \\
& 125^{\circ} \mathrm{C}
\end{aligned}
\] & UL 61058-1 & UL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{IEC 60950-1} \\
\hline Clause Req & \multicolumn{2}{|l|}{Requirement + Test} & \multicolumn{2}{|l|}{Result - Remark} & Verdict \\
\hline Or & Zhe Jiang BeiErJia Electronic Co., Ltd. & PS8A & \[
\begin{aligned}
& \text { 6(4)A, 250Vac, } \\
& 125^{\circ} \mathrm{C}
\end{aligned}
\] & IEC 61058-1 & VDE \\
\hline Or & Zhejiang Yuyang Technology Co., Ltd. & RS-2206 & \(6 \mathrm{~A}, 250 \mathrm{Vac}, 85^{\circ} \mathrm{C}\) & UL 1054, EN 61058-1 & UL, TUV \\
\hline Pluggable connector material (CN101) (housing) & Asahi Kasei Corp & FR370(j) & V-0, \(95^{\circ} \mathrm{C}\) & UL 94 & UL \\
\hline Earthed lead wire & Dongguan Zelongkang Wire Co., Ltd & 1015 & 18AWG, 600Vac, \(105^{\circ} \mathrm{C}, \mathrm{VW}-1\) & UL 758 & UL \\
\hline Or & Interchangeable & 1015 & Min. 18AWG, min. 300Vac, min. \(105^{\circ} \mathrm{C}, \mathrm{VW}-1\) & UL 758 & UL \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating} \\
\hline Input lead wire of power supply & YUTONG ELECTRONICS (HUI ZHOU) CO LTD & 1617 & 18AWG, 600Vac, \(105^{\circ} \mathrm{C}, \mathrm{VW}-1\) & UL 758 & UL \\
\hline Or & Interchangeable & -- & Min. 18AWG, min. 600Vac, min. \(105^{\circ} \mathrm{C}, \mathrm{VW}-1\) & UL 758 & UL \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating} \\
\hline Output lead wire of power supply & Shenzhen City De Xing Long Electric Co Ltd & 1007 & 28AWG, 300Vac, \(80^{\circ} \mathrm{C}, \mathrm{VW}-1\) & UL 758 & UL \\
\hline Or & Interchangeable & -- & Min. 28AWG, \(\min .80^{\circ} \mathrm{C}, \mathrm{VW}-1\) & UL 758 & UL \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating} \\
\hline Power supply & Shenzhen Megmeet Electrical Co., Ltd & \[
\begin{aligned}
& \text { MP135TL- } \\
& \text { 2N33-K2 }
\end{aligned}
\] & \begin{tabular}{l}
Input: 100-240Vac, 50/60Hz, 3A Max. \\
Output: \\
STB(+5.2Vdc, 0.5A); \\
V5(+5.2Vdc, 3A); \\
V12(+12.3Vdc, 4A); \\
VLED(\(\leq 101 \mathrm{~W}\), 105- \\
\(195 \mathrm{Vdc}, \leq 520 \mathrm{~mA}\)), \\
operated ambient \\
\(45^{\circ} \mathrm{C}\)
\end{tabular} & \[
\begin{aligned}
& \text { IEC 62368-1: } \\
& 2014
\end{aligned}
\] & Shenzhen Academy of Metrology and Quality Inspection with CB test report SMQ194911 (cert No. CN48185), SMQ-194911-M1 (cert No. CN48185M1), SMQ-194911-M2 (cert No. CN48185M2) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Another power supply & \begin{tabular}{l}
Shenzhen \\
MEGMEET \\
Electrical Co., Ltd
\end{tabular} & MP120DM-18 & Input: 100-240Vac, 50/60Hz, 1.4A Max. Output: 18Vdc, 5.55A, operated ambient \(40^{\circ} \mathrm{C}\) & \[
\begin{array}{|l|}
\hline \text { IEC 62368-1: } \\
2014
\end{array}
\] & Shenzhen UnionTrust Quality and Technology Co., Ltd (UTT) with CB test report No. 210518017C B-1 (CB Cert No. DK-116098-UL) \\
\hline IC (U1004, U1014, U1309, U1310 and U1311) used for main board & SG MICRO CORP & SGM2588KYN5 G/TR & Input: 2.5-5.5Vdc, output: \(0-5.0 \mathrm{Vdc}\), max. 2.6A & \[
\begin{aligned}
& \hline \text { IEC 62368-1: } \\
& 2018
\end{aligned}
\] & \begin{tabular}{l}
SGS-CSTC \\
Standards \\
Technical \\
Services \\
(Shanghai) \\
Co., Ltd. with CB test report \\
SHES20120 \\
2575101 \\
dated on \\
Jan. 04, \\
2021 (CB \\
cert No. BE- \\
38642)
\end{tabular} \\
\hline Mylar sheet & Sabic Innovative Plastics US L L C & FR700(GG) & V-0, \(125^{\circ} \mathrm{C}\), required thickness is min. 0.25 mm , measured thickness is min. 0.25 mm & UL 94 & UL \\
\hline Or & Dupont Hongji Films Foshan Co., Ltd. & EM & VTM-2, \(105^{\circ} \mathrm{C}\), required thickness is min .0 .25 mm , measured thickness is min .0 .25 mm & UL 94 & UL \\
\hline Or & Jiangsu Yuxing Film Technology Co., Ltd. & 6021 & VTM-2, \(105^{\circ} \mathrm{C}\), required thickness is min. 0.25 mm , measured thickness is min .0 .25 mm & UL 94 & UL \\
\hline Or & SABIC INNOVATIVE PLASTICS US L LC & FR700 & V-0, \(130^{\circ} \mathrm{C}\), required thickness is min. 0.25 mm , measured thickness is min. 0.25 mm & UL 94 & UL \\
\hline Or & SABIC JAPAN L L C & FR700 & V-0, \(130^{\circ} \mathrm{C}\), required thickness is min. 0.25 mm , measured thickness is min. 0.25 mm & UL 94 & UL \\
\hline Or & SABIC JAPAN L L C & FR1(E1) (GG1) & VTM-0, \(125^{\circ} \mathrm{C}\), required thickness is min. 0.25 mm , measured thickness is min .0 .25 mm & UL 94 & UL \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Or & FORMEX, DIV OF ILLINOIS TOOL WORKS INC & \[
\begin{aligned}
& \text { Formex N1J- } \\
& \text { (a)(b)(f2) }
\end{aligned}
\] & VTM-0, \(105^{\circ} \mathrm{C}\), required thickness is min. 0.25 mm , measured thickness is min .0 .25 mm & UL 94 & UL \\
\hline PCB material (except power supply) & Shenzhen Stariver Circuits Co Ltd & SR-01 & V-0, \(130^{\circ} \mathrm{C}\) & UL 796 & UL \\
\hline Or & Interchangeable & -- & V-1 or better, \(\min .105^{\circ} \mathrm{C}\) & UL 796 & UL \\
\hline -Description: & \multicolumn{5}{|l|}{Interchangeability based on specified rating} \\
\hline RTC capacitor (C279) (on the main board) & Shanghai yongmin & \[
\begin{aligned}
& \text { SNC 1.0F 5.5V } \\
& \text { D20.5-H7.5-P5 }
\end{aligned}
\] & \(1.0 \mathrm{~F}, 5.5 \mathrm{~V}, 70^{\circ} \mathrm{C}\) & IEC 60950-1 & Tested with appliance \\
\hline Or & \begin{tabular}{l}
Shenzhen XIA \\
XINGRONG \\
Electronic \\
Technology Co., Ltd
\end{tabular} & CE5E5105CF & \(1.0 \mathrm{~F}, 5.5 \mathrm{~V}, 70^{\circ} \mathrm{C}\) & IEC 60950-1 & Tested with appliance \\
\hline
\end{tabular}

\section*{Supplementary information:}
1) Provided evidence ensures the agreed level of compliance. See OD-CB2039.
2) Description line content is optional. Main line description needs to clearly detail the component used for testing
\begin{tabular}{|c|c|c|}
\hline 1.5.1 & TABLE: Opto Electronic Devices & P \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Manufacturer..:}} & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type ...:}} & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{Separately tested..................................:} & \\
\hline \multicolumn{2}{|l|}{Bridging insulation ...} & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{External creepage distance:}} & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Internal creepage distance:}} & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Distance through insulation:}} & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{} & \\
\hline \multicolumn{2}{|l|}{Tested under the following conditions:
Input..:} & \\
\hline \multicolumn{2}{|l|}{Output...: --} & \\
\hline \multicolumn{3}{|l|}{Supplementary information: evaluated in the test report of power supply} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline 1.6 .2 & \multicolumn{5}{|c|}{ TABLE: Electrical data (in normal conditions) } & P \\
\hline \multicolumn{2}{|c|}{\(\mathrm{U}(\mathrm{V})\)} & \(\mathrm{I}(\mathrm{A})\) & Irated (A) & \(\mathrm{P}(\mathrm{W})\) & Fuse \# & Ifuse (A)
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 100 Vac 50 Hz & 2.043 & 2.5 & 201.1 & FP1, F1 & 2.043 & \\
\hline 240Vac 50Hz & 0.917 & 2.5 & 197.9 & FP1, F1 & 0.917 & \\
\hline 264 Vac 50 Hz & 0.846 & -- & 197.6 & FP1, F1 & 0.846 & \\
\hline 90 Vac 60 Hz & 2.272 & -- & 202.3 & FP1, F1 & 2.272 & \\
\hline 100 Vac 60 Hz & 2.047 & 2.5 & 201.2 & FP1, F1 & 2.047 & \\
\hline 240 Vac 60 Hz & 0.960 & 2.5 & 198.2 & FP1, F1 & 0.960 & \\
\hline 264 Vac 60 Hz & 0.864 & -- & 198.1 & FP1, F1 & 0.864 & \\
\hline 90 Vac 50 Hz & 2.291 & -- & 203.7 & FP1, F1 & 2.291 & DP mode \\
\hline 100Vac 50Hz & 2.056 & 2.5 & 202.8 & FP1, F1 & 2.056 & \\
\hline 240 Vac 50 Hz & 0.924 & 2.5 & 199.3 & FP1, F1 & 0.924 & \\
\hline 264 Vac 50 Hz & 0.879 & -- & 199.3 & FP1, F1 & 0.879 & \\
\hline 90 Vac 60 Hz & 2.288 & -- & 203.3 & FP1, F1 & 2.288 & \\
\hline 100 Vac 60 Hz & 2.072 & 2.5 & 203.0 & FP1, F1 & 2.072 & \\
\hline 240 Vac 60 Hz & 0.963 & 2.5 & 199.1 & FP1, F1 & 0.963 & \\
\hline 264 Vac 60 Hz & 0.868 & -- & 198.8 & FP1, F1 & 0.868 & \\
\hline 90 Vac 50 Hz & 2.278 & -- & 202.6 & FP1, F1 & 2.278 & VGA mode \\
\hline 100 Vac 50 Hz & 2.059 & 2.5 & 201.7 & FP1, F1 & 2.059 & \\
\hline 240 Vac 50 Hz & 0.918 & 2.5 & 198.3 & FP1, F1 & 0.918 & \\
\hline 264 Vac 50 Hz & 0.848 & -- & 197.9 & FP1, F1 & 0.848 & \\
\hline 90 Vac 60 Hz & 2.269 & -- & 202.3 & FP1, F1 & 2.269 & \\
\hline 100 Vac 60 Hz & 2.049 & 2.5 & 201.2 & FP1, F1 & 2.049 & \\
\hline 240 Vac 60 Hz & 0.959 & 2.5 & 198.3 & FP1, F1 & 0.959 & \\
\hline 264 Vac 60 Hz & 0.864 & -- & 197.9 & FP1, F1 & 0.864 & \\
\hline 90 Vac 50 Hz & 2.211 & -- & 201.6 & FP1, F1 & 2.211 & USB mode \\
\hline 100 Vac 50 Hz & 2.049 & 2.5 & 201.4 & FP1, F1 & 2.049 & \\
\hline 240 Vac 50 Hz & 0.915 & 2.5 & 198.8 & FP1, F1 & 0.915 & \\
\hline 264 Vac 50 Hz & 0.831 & -- & 198.7 & FP1, F1 & 0.831 & \\
\hline 90 Vac 60 Hz & 2.231 & -- & 201.8 & FP1, F1 & 2.231 & \\
\hline 100 Vac 60 Hz & 2.055 & 2.5 & 201.5 & FP1, F1 & 2.055 & \\
\hline 240 Vac 60 Hz & 0.933 & 2.5 & 198.9 & FP1, F1 & 0.933 & \\
\hline 264 Vac 60 Hz & 0.852 & -- & 198.8 & FP1, F1 & 0.852 & \\
\hline 90 Vac 50 Hz & 2.265 & -- & 201.2 & FP1, F1 & 2.265 & Network mode \\
\hline 100 Vac 50 Hz & 2.031 & 2.5 & 199.4 & FP1, F1 & 2.031 & \\
\hline 240 Vac 50 Hz & 0.916 & 2.5 & 197.0 & FP1, F1 & 0.916 & \\
\hline 264 Vac 50 Hz & 0.873 & -- & 197.5 & FP1, F1 & 0.873 & \\
\hline 90 Vac 60 Hz & 2.254 & -- & 200.5 & FP1, F1 & 2.254 & \\
\hline
\end{tabular}

\section*{IEC 60950-1}
\begin{tabular}{|l|c|c|c|c|c|}
\hline 100 Vac 60 Hz & 2.038 & 2.5 & 200.4 & FP1, F1 & 2.038 \\
\hline 240 Vac 60 Hz & 0.952 & 2.5 & 196.3 & FP1, F1 & 0.952 \\
\hline 264 Vac 60 Hz & 0.857 & -- & 196.2 & FP1, F1 & 0.857 \\
\hline
\end{tabular}

Supplementary information:

\subsection*{2.1.1.5 c) 1) TABLE: max. V, A, VA test}
\begin{tabular}{|c|c|c|c|c|}
\hline \hline \begin{tabular}{c}
Voltage (rated) \\
\((\mathrm{V})\)
\end{tabular} & \begin{tabular}{c}
Current (rated) \\
\((\mathrm{A})\)
\end{tabular} & Voltage (max.) (V) & \begin{tabular}{c}
Current (max.) \\
\((\mathrm{A})\)
\end{tabular} & \begin{tabular}{c}
VA (max.) \\
\((\mathrm{VA})\)
\end{tabular} \\
\hline USB1 port: \\
\hline 5.0 Vdc & 0.5 & 5.12 Vdc & 2.95 & 12.0 \\
\hline USB2 port: & 0.5 & 5.12 Vdc & 2.95 & 12.0 \\
\hline 5.0 Vdc &
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 2.1.1.5 c) 2) & TABLE: stored energy & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \hline Capacitance C \((\mu \mathrm{F})\) & Voltage \(\mathrm{U}(\mathrm{V})\) & Energy E (J) \\
\hline-- & -- & -- \\
\hline \multicolumn{4}{|l|}{ Supplementary information: -- } & \\
\hline
\end{tabular}
2.2

TABLE: evaluation of voltage limiting components in SELV circuits
P
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Component (measured between)} & \multicolumn{2}{|l|}{Max. voltage (V) (normal operation)} & \multirow[t]{2}{*}{Voltage Limiting Components} \\
\hline & \(V\) peak & V d.c. & \\
\hline -- & -- & -- & -- \\
\hline Fault test performed on voltage limiting components & \multicolumn{3}{|r|}{Voltage measured (V) in SELV circuits (V peak or V d.c.)} \\
\hline -- & \multicolumn{3}{|l|}{--} \\
\hline \begin{tabular}{l}
Supplementary information: \\
Evaluated in the test report of power supply
\end{tabular} & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2.5 TAB & \multicolumn{5}{|l|}{TABLE: Limited power sources} & P \\
\hline \multicolumn{7}{|l|}{Circuit output tested:} \\
\hline \multicolumn{7}{|l|}{Note: Measured Uoc (V) with all load circuits disconnected:} \\
\hline \multirow[t]{2}{*}{Components} & \multirow[t]{2}{*}{Test condition (Single fault)} & \multirow[t]{2}{*}{Uoc (V)} & \multicolumn{2}{|c|}{\(\mathrm{I}_{\text {sc }}(\mathrm{A})\)} & \multicolumn{2}{|c|}{VA} \\
\hline & & & Meas. & Limit & Meas. & Limit \\
\hline \multirow[t]{4}{*}{USB1 port} & Normal & 5.12 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline & R1883 OC & 5.10 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline & R1883 SC & 5.10 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline & R1884 OC & 5.10 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{IEC 60950-1} \\
\hline Clause Requi & \multicolumn{2}{|l|}{Requirement + Test} & \multicolumn{3}{|l|}{Result - Remark} & Verdict \\
\hline & R1884 SC & 5.10 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline \multirow[t]{5}{*}{USB2 port} & Normal & 5.12 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline & R1880 OC & 5.10 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline & R1880 SC & 5.10 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline & R1886 OC & 5.10 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline & R1886 SC & 5.10 Vdc & 2.95 & \(\leq 8 \mathrm{~A}\) & 12.0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{IR-IN port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & J6 pin14-20 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{HDMI-OUT port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & D772 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{SPDIF port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & R7 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{TOUCH-USB port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & R2390 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{DP port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & U27 pin3-4 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{HDMI1 port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & R184 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{HDMI2 port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & R814 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{VGA port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & D152 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{PC-AUDIO port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & U14 pin12-16 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{AUDIO-OUT port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & C226 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{RS232 port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & U21 pin8-16 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{LAN2 port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & U702 pin1-16 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multirow[t]{2}{*}{LAN1 port} & Normal & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline & U703 pin1-16 SC & 0 & 0 & \(\leq 8 \mathrm{~A}\) & 0 & \(\leq 100\) \\
\hline \multicolumn{7}{|l|}{Supplementary Information: SC=Short circuit, OC=Open circuit} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{IEC 60950-1} \\
\hline Clause & \multicolumn{2}{|l|}{Requirement + Test} & \multicolumn{2}{|r|}{Result - Remark} & Verdict \\
\hline 2.10 .2 & \multicolumn{4}{|l|}{Table: working voltage measurement} & P \\
\hline \multicolumn{2}{|l|}{Location} & RMS voltage (V) & Peak voltage (V) & \multicolumn{2}{|l|}{Comments} \\
\hline -- & & -- & -- & -- & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Supplementary information: \\
Evaluated in the test report of power supply
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 2.10.3 and } \\
& 2.10 .4
\end{aligned}
\] & \multicolumn{6}{|l|}{TABLE: Clearance and creepage distance measurements} & P \\
\hline Clearance distance (cr) &) and creepage at/of/between: & U peak (V) & \begin{tabular}{l}
U r.m.s. \\
(V)
\end{tabular} & Required cl (mm) & \[
\begin{gathered}
\hline \mathrm{cl} \\
(\mathrm{~mm})
\end{gathered}
\] & Required cr (mm) & \[
\begin{gathered}
\mathrm{cr} \\
(\mathrm{~mm})
\end{gathered}
\] \\
\hline \multicolumn{8}{|l|}{Functional:} \\
\hline \multicolumn{2}{|l|}{Different polarity of AC mains before power supply} & 340 & 240 & 2.3 & 3.5 & 2.4 & 3.5 \\
\hline \multicolumn{8}{|l|}{Basic/supplementary:} \\
\hline \multicolumn{2}{|l|}{Primary live part and earthed metal enclosure} & 340 & 240 & 3.0 & 3.6 & 3.0 & 3.6 \\
\hline \multicolumn{2}{|l|}{LED backlight circuit and unearthed accessible panel surface} & 340 & 240 & 3.0 & 10.0 & 3.0 & 10.0 \\
\hline \multicolumn{8}{|l|}{Reinforced:} \\
\hline \multicolumn{2}{|l|}{Secondary lead wire and primary live part} & 340 & 240 & 6.0 & 10.0 & 6.0 & 10.0 \\
\hline \multicolumn{8}{|l|}{Supplementary information:} \\
\hline \multicolumn{8}{|l|}{2) A multiplier factor (1.48) was used to consider the addition altitude requirement for clearance as the equipment was intend to be operated under altitude up to 5000 m .} \\
\hline \multicolumn{8}{|l|}{3) Internal all lead wires are connected to PCB by pluggable connector.} \\
\hline \multicolumn{8}{|l|}{4) Mylar sheet with 250 mm length by 175 mm width is provided on the bottom of power supply (model MP135TL-2N33-K2).} \\
\hline \multicolumn{8}{|l|}{5) Mylar sheet with 160 mm length by 170 mm width is provided on the bottom of power supply (model MP120DM-18).} \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|c|c|c|c|c|}\hline \text { 2.10.5 } & \text { TABLE: Distance through insulation measurements } & \text { P } \\ \hline \text { Distance through insulation (DTI) at/of: }\end{array} \begin{array}{l}\text { U peak } \\ \text { (V) }\end{array}\right)\)
\begin{tabular}{|l|l|l|c|}
\hline 4.3 .8 & TABLE: Batteries & N/A \\
\hline \begin{tabular}{l}
The tests of 4.3.8 are applicable only when appropriate battery data \\
is not available
\end{tabular} & See below. & N/A \\
\hline Is it possible to install the battery in a reverse polarity position? & Customized connector used & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{IEC 60950-1} \\
\hline Clause \(\quad\) Requir & \multicolumn{3}{|l|}{Requirement + Test} & \multicolumn{5}{|c|}{Result - Remark} & Verdict \\
\hline & \multicolumn{3}{|l|}{Non-rechargeable batteries} & \multicolumn{6}{|c|}{Rechargeable batteries} \\
\hline & \multicolumn{2}{|l|}{Discharging} & \multirow[t]{2}{*}{Unintentional charging} & \multicolumn{2}{|l|}{Charging} & \multicolumn{2}{|l|}{Discharging} & \multicolumn{2}{|l|}{Reversed charging} \\
\hline & Meas. current & Manuf. Specs. & & Meas. current & Manuf. Specs. & Meas. current & Manuf. Specs. & Meas. current & Manuf. Specs. \\
\hline Max. current during normal condition & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline Max. current during fault condition & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{6}{|l|}{Test results:} & & & & Verdict \\
\hline \multicolumn{6}{|l|}{- Chemical leaks} & -- & & & N/A \\
\hline \multicolumn{6}{|l|}{- Explosion of the battery} & -- & & & N/A \\
\hline \multicolumn{6}{|l|}{- Emission of flame or expulsion of molten metal} & -- & & & N/A \\
\hline \multicolumn{6}{|l|}{- Electric strength tests of equipment after completion of tests} & -- & & & N/A \\
\hline \multicolumn{10}{|l|}{Supplementary information: --} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 4.3.8 & TABLE: Batteries & N/A \\
\hline \hline Battery category..: & -- & \\
Manufacturer...: & -- & \\
Type / model..: & -- & \\
Voltage..: & -- & \\
Capacity...: & -- & \\
Tested and Certified by (incl. Ref. No.): & -- & \\
Circuit protection diagram: & -- & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ MARKINGS AND INSTRUCTIONS (1.7.13) } \\
\hline Location of replaceable battery & -- \\
\hline Language(s): & -- \\
\hline Close to the battery: & -- \\
\hline In the servicing instructions: & -- \\
\hline In the operating instructions: & -- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 4.5 & \multicolumn{5}{|l|}{TABLE: Thermal requirements} & P \\
\hline & Supply voltage (V): & \multicolumn{2}{|l|}{\(90 \mathrm{Vac} / 50 \mathrm{~Hz}^{1}\)} & \multicolumn{2}{|l|}{264Vac / 50Hz \({ }^{\text {1 }}\)} & - \\
\hline & Ambient Tmin (\({ }^{\circ} \mathrm{C}\)): & -- & -- & -- & -- & - \\
\hline & Ambient \(\operatorname{Tmax}\left({ }^{\circ} \mathrm{C}\right) \ldots \ldots . . .\). : & -- & -- & -- & -- & - \\
\hline \multicolumn{2}{|l|}{Maximum measured temperature T of part/at:} & \multicolumn{4}{|c|}{\(\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)\)} & Allowed
\[
\mathrm{T}_{\max }\left({ }^{\circ} \mathrm{C}\right)
\] \\
\hline \multicolumn{2}{|l|}{Test direction} & \multicolumn{4}{|c|}{Horizontal direction} & \\
\hline \multicolumn{2}{|l|}{Calculated value for Tma:} & -- & 40.0 & -- & 40.0 & -- \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ambient temperature during test (Tamb): & 25.1 & -- & 25.0 & -- & -- \\
\hline AC inlet & 30.8 & 45.7 & 30.4 & 45.4 & 70 \\
\hline AC input wire & 37.9 & 52.8 & 37.0 & 52.0 & 105 \\
\hline For & \\
\hline
\end{tabular}

For power supply board model: MP120DM-18
\begin{tabular}{|l|l|l|l|l|l|}
\hline AC connector (CN1) & 44.9 & 59.8 & 39.3 & 54.3 & 85 \\
\hline CX1 body & 45.2 & 60.1 & 38.8 & 53.8 & 100 \\
\hline CY1\&CY2 body & 59.8 & 74.7 & 47.4 & 62.4 & 125 \\
\hline FL1 winding & 65.0 & 79.9 & 44.3 & 59.3 & 120 \\
\hline PCB near Q3\&Q4 & 63.5 & 78.4 & 64.7 & 79.7 & 130 \\
\hline PCB near DP1 & 74.8 & 89.7 & 54.2 & 69.2 & 130 \\
\hline L1 winding & 60.7 & 75.6 & 49.6 & 64.6 & 130 \\
\hline PCB near Q1 & 62.7 & 77.6 & 62.7 & 77.7 & 130 \\
\hline EC1 body & 47.8 & 62.7 & 47.9 & 62.9 & 105 \\
\hline L3 winding & 67.6 & 82.5 & 58.2 & 73.2 & 130 \\
\hline Transformer(T1) winding & 70.5 & 85.4 & 73.7 & 88.7 & 110 \\
\hline Transformer(T1) core & 63.9 & 78.8 & 67.1 & 82.1 & 110 \\
\hline CY3 body & 55.3 & 70.2 & 54.3 & 69.3 & 125 \\
\hline PCB near U3 & 47.4 & 62.3 & 49.1 & 64.1 & 130 \\
\hline PCB near D3 & 69.0 & 83.9 & 71.0 & 86.0 & 130 \\
\hline PCB near D9 & 67.2 & 82.1 & 69.2 & 84.2 & 130 \\
\hline EC2 body & 65.7 & 80.6 & 67.7 & 82.7 & 105 \\
\hline Mylar near Transformer (T1) & 52.1 & 67.0 & 50.7 & 65.7 & 105 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{6}{|l|}{ For power supply board model: MP135TL-2N33-K2 } \\
\hline AC connector (CN102) & 40.5 & 55.4 & 38.6 & 53.6 & 85 \\
\hline LP4 winding & 47.4 & 62.3 & 40.5 & 55.5 & 120 \\
\hline CY2 \& CY3 body & 40.4 & 55.3 & 39.9 & 54.9 & 125 \\
\hline CX1 body & 41.5 & 56.4 & 38.8 & 53.8 & 100 \\
\hline LP6 winding & 53.0 & 67.9 & 41.9 & 56.9 & 120 \\
\hline PCB near DP3 & 66.0 & 80.9 & 51.8 & 66.8 & 130 \\
\hline PCB near DP1 & 60.4 & 75.3 & 55.3 & 70.3 & 130 \\
\hline LP1 winding & 68.6 & 83.5 & 62.9 & 77.9 & 120 \\
\hline PCB near DP2 & 71.6 & 86.5 & 79.8 & 94.8 & 130 \\
\hline PCB near QP1 & 71.0 & 85.9 & 81.5 & 96.5 & 130 \\
\hline CP2\&CP3 body & 50.3 & 65.2 & 50.9 & 65.9 & 105 \\
\hline PCB near QF4 & 59.5 & 74.4 & 62.0 & 77.0 & 130 \\
\hline PCB near QF12 & 64.6 & 79.5 & 68.4 & 83.4 & 130 \\
\hline Transformer (TF1) winding & 59.2 & 74.1 & 63.5 & 78.5 & 110 \\
\hline Transformer (TF1) core & 59.0 & 73.9 & 63.1 & 78.1 & 110 \\
\hline Transformer (TF2) winding & 69.3 & 84.2 & 72.2 & 87.2 & 110 \\
\hline
\end{tabular}

TRF No. IEC60950_1G
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{IEC 60950-1} \\
\hline Clause & Requirement + Test & & \multicolumn{3}{|c|}{Result - Remark} & Verdict \\
\hline \multicolumn{2}{|l|}{Transformer (TF2) core} & 62.4 & 77.3 & 66.6 & 81.6 & 110 \\
\hline \multicolumn{2}{|l|}{CY1 body} & 50.7 & 65.6 & 52.0 & 67.0 & 125 \\
\hline \multicolumn{2}{|l|}{CY4 body} & 50.6 & 65.5 & 54.8 & 69.8 & 125 \\
\hline \multicolumn{2}{|l|}{PCB near PF1} & 51.9 & 66.8 & 53.3 & 68.3 & 130 \\
\hline \multicolumn{2}{|l|}{PCB near PF2} & 49.5 & 64.4 & 50.1 & 65.1 & 130 \\
\hline \multicolumn{2}{|l|}{PCB near PF3} & 54.0 & 68.9 & 57.7 & 72.7 & 130 \\
\hline \multicolumn{2}{|l|}{CF7 body} & 53.3 & 68.2 & 56.7 & 71.7 & 105 \\
\hline \multicolumn{2}{|l|}{PCB near QF1\&DF3} & 61.3 & 76.2 & 65.2 & 80.2 & 130 \\
\hline \multicolumn{2}{|l|}{PCB near DB2} & 66.3 & 81.2 & 68.7 & 83.7 & 130 \\
\hline \multicolumn{2}{|l|}{LB1 winding} & 64.6 & 79.5 & 69.8 & 84.8 & 120 \\
\hline \multicolumn{2}{|l|}{PCB near QF1} & 53.9 & 68.8 & 57.1 & 72.1 & 130 \\
\hline \multicolumn{2}{|l|}{Mylar sheet near Transformer (TF2)} & 53.3 & 68.2 & 56.8 & 71.8 & 105 \\
\hline \multicolumn{7}{|l|}{For other part} \\
\hline \multicolumn{2}{|l|}{PCB near U1306 (main board)} & 44.8 & 59.7 & 48.3 & 63.3 & 105 \\
\hline \multicolumn{2}{|l|}{C279 body (main board)} & 37.8 & 52.7 & 40.9 & 55.9 & 105 \\
\hline \multicolumn{2}{|l|}{C91 body(main board)} & 38.4 & 53.3 & 41.4 & 56.4 & 105 \\
\hline \multicolumn{2}{|l|}{PCB near UV3 (main board)} & 57.6 & 72.5 & 61.5 & 76.5 & 105 \\
\hline \multicolumn{2}{|l|}{PCB near U1 (main board)} & 50.8 & 65.7 & 58.3 & 73.3 & 105 \\
\hline \multicolumn{2}{|l|}{PCB near Q1\&Q2 (OPS board)} & 35.8 & 50.7 & 37.0 & 52.0 & 105 \\
\hline \multicolumn{2}{|l|}{CE2 body (OPS board)} & 36.1 & 51.0 & 37.2 & 52.2 & 105 \\
\hline \multicolumn{2}{|l|}{PCB near U5 (OPS board)} & 32.9 & 47.8 & 34.3 & 49.3 & 105 \\
\hline \multicolumn{2}{|l|}{PCB near U10 (OPS board)} & 57.7 & 72.6 & 58.4 & 73.4 & 105 \\
\hline \multicolumn{2}{|l|}{Metallic enclosure outside near TF1} & 27.4 & 42.3 & 27.6 & 42.6 & 70 \\
\hline \multicolumn{2}{|l|}{Switch} & 28.8 & 43.7 & 30.1 & 45.1 & 95 \\
\hline \multicolumn{2}{|l|}{Metallic enclosure outside near TF2} & 33.2 & 48.1 & 32.1 & 47.1 & 70 \\
\hline \multicolumn{2}{|l|}{Panel} & 31.0 & 45.9 & 30.9 & 45.9 & 70 \\
\hline \multicolumn{2}{|l|}{Button} & 31.4 & 46.3 & 32.5 & 47.5 & 95 \\
\hline \multicolumn{2}{|l|}{Test direction} & \multicolumn{4}{|c|}{Vertical direction} & \\
\hline \multicolumn{2}{|l|}{Calculated value for Tma:} & -- & 40.0 & -- & 40.0 & -- \\
\hline \multicolumn{2}{|l|}{Ambient temperature during test (Tamb):} & 26.2 & -- & 26.3 & -- & -- \\
\hline \multicolumn{2}{|l|}{AC inlet} & 39.4 & 53.3 & 38.6 & 52.4 & 70 \\
\hline \multicolumn{2}{|l|}{AC input wire} & 45.8 & 59.7 & 44.6 & 58.4 & 105 \\
\hline \multicolumn{7}{|l|}{For power supply model: MP120DM-18} \\
\hline \multicolumn{2}{|l|}{AC connector (CN1)} & 59.5 & 73.4 & 51.2 & 65.0 & 85 \\
\hline \multicolumn{2}{|l|}{CX1 body} & 60.1 & 74.0 & 53.3 & 67.1 & 100 \\
\hline \multicolumn{2}{|l|}{CY1\&CY2 body} & 63.0 & 76.9 & 55.8 & 69.6 & 125 \\
\hline \multicolumn{2}{|l|}{FL1 winding} & 80.9 & 94.8 & 58.9 & 72.7 & 120 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline PCB near Q3\&Q4 & 73.0 & 86.9 & 71.3 & 85.1 & 130 \\
\hline PCB near DP1 & 81.1 & 95.0 & 62.2 & 76.0 & 130 \\
\hline L1 winding & 72.3 & 86.2 & 59.5 & 73.3 & 130 \\
\hline PCB near Q1 & 70.2 & 84.1 & 68.3 & 82.1 & 130 \\
\hline EC1 body & 62.2 & 76.1 & 61.1 & 74.9 & 105 \\
\hline L3 winding & 76.4 & 90.3 & 64.0 & 77.8 & 130 \\
\hline Transformer(T1) winding & 83.3 & 97.2 & 82.9 & 96.7 & 110 \\
\hline Transformer(T1) core & 77.8 & 91.7 & 77.2 & 91.0 & 110 \\
\hline CY3 body & 59.8 & 73.7 & 58.7 & 72.5 & 125 \\
\hline PCB near U3 & 57.2 & 71.1 & 56.4 & 70.2 & 130 \\
\hline PCB near D3 & 71.0 & 84.9 & 71.0 & 84.8 & 130 \\
\hline PCB near D9 & 67.2 & 81.1 & 67.0 & 80.8 & 130 \\
\hline EC2 body & 64.1 & 78.0 & 64.2 & 78.0 & 105 \\
\hline Mylar near Transformer (T1) & 56.2 & 70.1 & 53.6 & 67.4 & 105 \\
\hline For & & & & \\
\hline
\end{tabular}

For power supply board model: MP135TL-2N33-K2
\begin{tabular}{|l|r|r|r|r|l|}
\hline AC connector (CN102) & 48.5 & 62.4 & 45.5 & 59.3 & 85 \\
\hline LP4 winding & 57.8 & 71.7 & 48.9 & 62.7 & 120 \\
\hline CY2 \& CY3 body & 50.6 & 64.5 & 46.9 & 60.7 & 125 \\
\hline CX1 body & 51.7 & 65.6 & 47.7 & 61.5 & 100 \\
\hline LP6 winding & 64.8 & 78.7 & 51.8 & 65.6 & 120 \\
\hline PCB near DP3 & 73.2 & 87.1 & 60.1 & 73.9 & 130 \\
\hline PCB near DP1 & 64.7 & 78.6 & 63.4 & 77.2 & 130 \\
\hline LP1 winding & 73.7 & 87.6 & 69.4 & 83.2 & 120 \\
\hline PCB near DP2 & 73.4 & 87.3 & 81.9 & 95.7 & 130 \\
\hline PCB near QP1 & 72.5 & 86.4 & 82.3 & 96.1 & 130 \\
\hline CP2\&CP3 body & 56.2 & 70.1 & 55.9 & 69.7 & 105 \\
\hline PCB near QF4 & 61.1 & 75.0 & 61.7 & 75.5 & 130 \\
\hline PCB near QF12 & 62.7 & 76.6 & 63.5 & 77.3 & 130 \\
\hline Transformer (TF1) winding & 62.7 & 76.6 & 63.4 & 77.2 & 110 \\
\hline Transformer (TF1) core & 58.3 & 72.2 & 58.9 & 72.7 & 110 \\
\hline Transformer (TF2) winding & 67.9 & 81.8 & 67.8 & 81.6 & 110 \\
\hline Transformer (TF2) core & 62.1 & 76.0 & 62.2 & 76.0 & 110 \\
\hline CY1 body & 53.7 & 67.6 & 54.2 & 68.0 & 125 \\
\hline CY4 body & 45.6 & 59.5 & 46.0 & 59.8 & 125 \\
\hline PCB near PF1 & 51.3 & 65.2 & 51.8 & 65.6 & 130 \\
\hline PCB near PF2 & 48.3 & 62.2 & 48.8 & 62.6 & 130 \\
\hline PCB near PF3 & 51.4 & 65.3 & 51.9 & 65.7 & 130 \\
\hline CF7 body & 56.9 & 70.8 & 57.3 & 71.1 & 105 \\
\hline PCB near QF1\&DF3 & 62.5 & 76.4 & 62.9 & 76.7 & 130 \\
\hline
\end{tabular}

TRF No. IEC60950_1G

\begin{tabular}{|l|l|l|l|c|}
\hline 4.5 .5 & TABLE: Ball pressure test of thermoplastic parts & & P \\
\hline & Allowed impression diameter (mm) \(\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ~\) & \(\leq 2 \mathrm{~mm}\) & - \\
\hline Part & \begin{tabular}{c}
Test temperature \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
Impression diameter \\
\((\mathrm{mm})\)
\end{tabular} \\
\hline Pluggable connector material (CN101) (housing) / FR370(j) & 125 & 1.4 \\
\hline
\end{tabular}

Supplementary information:
Pluggable connector material (CN101) (locking header) had been evaluated in the test report of power supply

TRF No. IEC60950_1G
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

Supplementary information:--
\begin{tabular}{|l|c|c|l|c|}
\hline 5.1 & TABLE: touch current measurement & P \\
\hline \hline Measured between: & \begin{tabular}{c}
Measured \\
\((\mathrm{mA})\)
\end{tabular} & \begin{tabular}{c}
Limit \\
\((\mathrm{mA})\)
\end{tabular} & Comments/conditions \\
\hline L/N and metal enclosure (earthed) & Max. 0.240 mA & 3.5 & Input 264 Vac 50 Hz, normal working \\
\hline \begin{tabular}{l}
L/N and output terminal \\
(unearthed)
\end{tabular} & Max. 0.006 mA & 0.25 & Input 264 Vac 50 Hz, normal working \\
\hline L/N and output terminal (earthed) & Max. 0.240 mA & 3.5 & Input 264 Vac 50 Hz, normal working \\
\hline L/N and panel with foil & Max. 0.003 mA & 0.25 & Input 264 Vac 50 Hz , normal working \\
\hline Supplementary information: -- & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 5.2 & \multicolumn{3}{|l|}{TABLE: Electric strength tests, impulse tests and voltage surge tests} & P \\
\hline Test & applied between: & Voltage shape (AC, DC, impulse, surge) & Test voltage (V) & \[
\begin{aligned}
& \text { Breakdow } \\
& \text { n } \\
& \text { Yes / No }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{Functional:} \\
\hline Diffe & arity of AC mains (after fuse opened) & AC & 1500 & No \\
\hline \multicolumn{5}{|l|}{Basic/supplementary:} \\
\hline \multicolumn{2}{|l|}{L/N and accessible terminal (earthed)} & DC & 2121 & No \\
\hline \multicolumn{2}{|l|}{L/N and metallic enclosure} & DC & 2121 & No \\
\hline \multicolumn{2}{|l|}{Mylar sheet \({ }^{2}\))} & AC & 1500 & No \\
\hline \multicolumn{5}{|l|}{Reinforced:} \\
\hline \multicolumn{2}{|l|}{L/N and panel with foil} & AC & 3000 & No \\
\hline \multicolumn{2}{|l|}{L/N and accessible terminal (unearthed)} & AC & 3000 & No \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Supplementary information: \\
1) The test on the transformer had been evaluated in the test report of power supply. \\
2) All source(Mylar sheet) have been considered
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5.3 & \multicolumn{6}{|l|}{TABLE: Fault condition tests} & P \\
\hline & \multicolumn{4}{|l|}{Ambient temperature (\({ }^{\circ} \mathrm{C}\)) :} & \multicolumn{2}{|l|}{\(25.0^{\circ} \mathrm{C}\), if not separately specified} & - \\
\hline & \multicolumn{4}{|l|}{Power source for EUT: Manufacturer, model/type, output rating \(\qquad\)} & \multicolumn{2}{|l|}{--} & - \\
\hline Component No. & Fault & Supply voltage (V) & Test time & Fuse \# & Fuse current (A) & Observation & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

The EUT was working normally under DP mode:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Speaker & \begin{tabular}{l}
Max. \\
Non-clipped
\end{tabular} & 264 Vac & \begin{tabular}{l}
2hrs \\
14 mins
\end{tabular} & FP1, F1 & 0.905 & \begin{tabular}{l}
The unit was working normally, no damaged, no hazard. \\
TF1 coil: \(82^{\circ} \mathrm{C}\) \\
TF2 coil: \(69.8^{\circ} \mathrm{C}\) \\
T1 coil: \(89.4^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF1: \(32.8^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near TF2: \(31.2^{\circ} \mathrm{C}\) \\
Panel: \(37.4^{\circ} \mathrm{C}\) \\
Switch: \(33.8^{\circ} \mathrm{C}\), \\
Button: \(31.5^{\circ} \mathrm{C}\) \\
Ambient: \(25.9^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Ventilation opening & Blocked & 264 Vac & 3hrs 38mins & FP1, F1 & 0.879 & \begin{tabular}{l}
The unit was working normally, no damaged, no hazard. \\
TF1 coil: \(77.7^{\circ} \mathrm{C}\) \\
TF2 coil: \(75.3^{\circ} \mathrm{C}\) \\
T1 coil: \(85.3^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF1: \(30.7^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF2: \(33.6^{\circ} \mathrm{C}\) \\
Panel: \(38.6^{\circ} \mathrm{C}\) \\
Switch: \(33.8^{\circ} \mathrm{C}\), \\
Button: \(31.9^{\circ} \mathrm{C}\) \\
Ambient: \(26.3^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline USB2.0 port \({ }^{1)}\) & Overload & 264 Vac & 7hrs 10 mins & FP1, F1 & 0.896 & \begin{tabular}{l}
Max. load was max. 2.5A, the output shut down when load increased to 2.6A. \\
No damage, no hazards. \\
TF1 coil: \(71.6^{\circ} \mathrm{C}\) \\
TF2 coil: \(71.8^{\circ} \mathrm{C}\) \\
T1 coil: \(84.1^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF1: \(34.0^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF2: \(31.9^{\circ} \mathrm{C}\) \\
Panel: \(38.3^{\circ} \mathrm{C}\) \\
Switch: \(35.0^{\circ} \mathrm{C}\), \\
Button: \(31.9^{\circ} \mathrm{C}\) \\
Ambient: \(26.3^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline OPS port & Overload & 264Vac & 9hrs 18mins & FP1, F1 & 1.102 & \begin{tabular}{l}
Max. overload was 153W, the EUT shut down when overload increased to 154 W , no damaged, no hazard. \\
TF1 coil: \(66.6^{\circ} \mathrm{C}\) \\
TF2 coil: \(71.9^{\circ} \mathrm{C}\) \\
T1 coil: \(117.1^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF1: \(33.6^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF2: \(34.3^{\circ} \mathrm{C}\) \\
Panel: \(38.3^{\circ} \mathrm{C}\) \\
Switch: \(34.3^{\circ} \mathrm{C}\), \\
Button: \(31.9^{\circ} \mathrm{C}\) \\
Ambient: \(26.3^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Speaker output & SC & 264 Vac & 1hr 46mins & FP1, F1 & 0.895 & \begin{tabular}{l}
The unit was working normally except speaker, no damaged, no hazards \\
TF1 coil: \(66.8^{\circ} \mathrm{C}\) \\
TF2 coil: \(69.6^{\circ} \mathrm{C}\) \\
T1 coil: \(83.2^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near TF1: \(33.2^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near TF2: \(31.3^{\circ} \mathrm{C}\) \\
Panel: \(37.4^{\circ} \mathrm{C}\) \\
Switch: \(34.2^{\circ} \mathrm{C}\), \\
Button: \(31.4^{\circ} \mathrm{C}\) \\
Ambient: \(25.9^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Transformer (T1) Pin 5/86/7 output after EC3 & O/L & 264Vac & \begin{tabular}{l}
10hrs \\
12mins
\end{tabular} & FP1, F1 & 1.124 & \begin{tabular}{l}
Max. overload was 3.7A, the EUT shut down when overload increased to 3.8 A , no damaged, no hazard. \\
TF1 coil: \(63.5^{\circ} \mathrm{C}\) \\
TF2 coil: \(69.9^{\circ} \mathrm{C}\) \\
T1 coil: \(121.1^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near TF1: \(30.3^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near TF2: \(31.3^{\circ} \mathrm{C}\) \\
Panel: \(35.7^{\circ} \mathrm{C}\) \\
Switch: \(39.2^{\circ} \mathrm{C}\), \\
Button: \(31.8^{\circ} \mathrm{C}\) \\
Ambient: \(26.3^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Transformer (TF2) Pin 1-4 output after CF27 & O/L & 264Vac & 3hrs 27mins & FP1, F1 & 1.032 & \begin{tabular}{l}
Max. overload was 0.3A, the EUT shut down when overload increased to 0.4 A , no damaged, no hazard. \\
TF1 coil: \(63.3^{\circ} \mathrm{C}\) \\
TF2 coil: \(72.1^{\circ} \mathrm{C}\) \\
T1 coil: \(82.3^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF1: \(32.6^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF2: \(31.7^{\circ} \mathrm{C}\) \\
Panel: \(36.4^{\circ} \mathrm{C}\) \\
Switch: \(33.3^{\circ} \mathrm{C}\), \\
Button: \(31.2^{\circ} \mathrm{C}\) \\
Ambient: \(25.8^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Transformer (TF1) Pin 810 output after CF7 & O/L & 264Vac & 3hrs
\[
27 \mathrm{mins}
\] & FP1, F1 & 1.092 & \begin{tabular}{l}
Max. overload was 4.5A, the EUT shut down when overload increased to 4.6A, no damaged, no hazard. \\
TF1 coil: \(98.9^{\circ} \mathrm{C}\) \\
TF2 coil: \(69.8^{\circ} \mathrm{C}\) \\
T1 coil: \(82.9^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF1: \(29.8^{\circ} \mathrm{C}\) \\
Metallic enclosure outside near \\
TF2: \(31.7^{\circ} \mathrm{C}\) \\
Panel: \(37.0^{\circ} \mathrm{C}\) \\
Switch: \(33.9^{\circ} \mathrm{C}\), \\
Button: \(31.7^{\circ} \mathrm{C}\) \\
Ambient: \(25.7^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline USB2.0 port \({ }^{1)}\) & SC & 264Vac & \[
\begin{gathered}
30 \\
\text { minutes }
\end{gathered}
\] & FP1, F1 & 0.864 & The EUT was working normally except USB port output, input power decreased, no damaged, no hazards. \\
\hline OPS port & SC & 264 Vac & \[
\begin{gathered}
30 \\
\text { minutes }
\end{gathered}
\] & FP1, F1 & 0.439 & The EUT was working normally except OPS port output, input power decreased, no damaged, no hazards. \\
\hline \[
\begin{gathered}
\text { VLED1+ to } \\
\text { metal } \\
\text { enclosure }
\end{gathered}
\] & SC & 264Vac & \[
\begin{gathered}
30 \\
\text { minutes }
\end{gathered}
\] & FP1, F1 & 0.144 & The unit was shut down, no damaged, no hazards. \\
\hline \[
\begin{gathered}
\hline \text { VLED2+ to } \\
\text { metal } \\
\text { enclosure }
\end{gathered}
\] & SC & 264Vac & \[
\begin{gathered}
30 \\
\text { minutes }
\end{gathered}
\] & FP1, F1 & 0.144 & The unit was shut down, no damaged, no hazards. \\
\hline \[
\begin{gathered}
\hline \text { VLED3+ to } \\
\text { metal } \\
\text { enclosure }
\end{gathered}
\] & SC & 264Vac & \[
\begin{gathered}
30 \\
\text { minutes }
\end{gathered}
\] & FP1, F1 & 0.144 & The unit was shut down, no damaged, no hazards. \\
\hline Q451 pin1-3
(main board) & SC & 264Vac & \[
\begin{gathered}
30 \\
\text { minutes }
\end{gathered}
\] & FP1, F1 & 0.657 & The EUT was working normally, input power not changed, no damaged, no hazards. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950-1 } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

Supplementary information:
1) Two USB2.0 ports were evaluated respectively, same result was obtained
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C. 2 & \multicolumn{6}{|l|}{TABLE: transformers} & P \\
\hline Loc. & Tested insulation & Working voltage peak / V
(2.10.2) & Working voltage rms / V
(2.10.2) & Required electric strength
(5.2) & Required clearance / mm
(2.10.3) & Required creepage distance / mm (2.10.4) & Required distance thr. insul.
(2.10.5) \\
\hline -- & -- & -- & -- & -- & -- & -- & -- \\
\hline Loc. & \multicolumn{3}{|l|}{Tested insulation} & Test voltage/ V & Measured clearance / mm & Measured creepage dist./ mm & Measured distance thr. insul. / mm; number of layers \\
\hline -- & \multicolumn{3}{|l|}{--} & -- & -- & -- & -- \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Supplementary information: \\
All transformers on the power supply had been evaluated in the test report of power supply.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline C. 2 & TABLE: transformers & P \\
\hline All transformers on the power supply had been evaluated in the test report of power supply. & \\
\hline
\end{tabular}

Page 1 of 1
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\begin{tabular}{|l|c|c|l|l|}
\hline 2.4 & TABLE: limited current circuit measurement \\
\hline Location & Voltage (V) & Current (mA) & Comments \\
\hline For power supply board model MP120DM-18 \\
\hline CY1 secondary to earth & 0.202 & 0.101 & Limit 0.7mA* \\
\hline CY2 secondary to earth & 0.240 & 0.120 & Limit 0.7mA* \\
\hline CY3 secondary to earth & 0.114 & 0.057 & Limit 0.7mA* \\
\hline \begin{tabular}{l}
CY1, CY2, CY3 secondary to \\
earth
\end{tabular} & 0.482 & 0.241 & Limit 0.7mA* \\
\hline For power supply model MP135TL-2N33-K2 & & \\
\hline CY1 secondary to earth & 0.08 & 0.040 & Limit 0.7mA* \\
\hline CY2 secondary to earth & 0.05 & 0.025 & Limit 0.7mA* \\
\hline CY3 secondary to earth & 0.03 & 0.015 & Limit 0.7mA* \\
\hline CY4 secondary to earth & 0.09 & 0.045 & Limit 0.7mA* \\
\hline \begin{tabular}{l}
CY1, CY2, CY3, CY4 secondary to \\
earth
\end{tabular} & 0.20 & 0.100 & Limit 0.7mA* \\
\hline supplementary information: *use the measuring instruments of the Annex D \\
\hline
\end{tabular}
\end{tabular} \begin{tabular}{l}
\\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{ATTACHMENT TO TEST REPORT IEC 60950-1 EUROPEAN GROUP DIFFERENCES AND NATIONAL DIFFERENCES Information technology equipment - Safety -} \\
\hline & Part 1: General requirements \\
\hline Differences according to: & EN 60950-1:2006/A11:2009/A1:2010/A12:2011/A2:2013 \\
\hline Attachment Form No.: & EU_GD_IEC60950_1G \\
\hline Attachment Originator.................: & SGS Fimko Ltd \\
\hline Master Attachment: & Date 2014-02 \\
\hline Copyright © 2014 IEC System for C Geneva, Switzerland. All rights res & formity Testing and Certification of Electrical Equipment (IECEE), ved. \\
\hline
\end{tabular}

EN 60950-1:2006/A11:2009/A1:2010/A12:2011/A2:2013 - CENELEC COMMON MODIFICATIONS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{IEC 60950-1, GROUP DIFFERENCES (CENELEC common modifications EN)} \\
\hline Claus & Requirement + Test \(\quad\) Result - Remark & Verdict \\
\hline & Clauses, subclauses, notes, tables and figures which are additional to those in IEC60950-1 and it's amendmets are prefixed "Z" & P \\
\hline Contents
(A2:2013 & Add the following annexes: & P \\
\hline General & Delete all the "country" notes in the reference document (IEC 60950-1:2005) according to the following list: & P \\
\hline General
(A1:2010 & Delete all the "country" notes in the reference document (IEC 60950-1:2005/A1:2010) according to the following list: & P \\
\hline & \begin{tabular}{l}
Delete all the "country" notes in the reference document (IEC 60950-1:2005/A2:2013) according to the following list: \\
2.7.1 \\
Note * \\
2.10.3. 1 Note 2 \\
6.2.2. Note \\
* Note of secretary: Text of Common Modification remains unchanged.
\end{tabular} & P \\
\hline & \begin{tabular}{l}
Replace the text of NOTE 3 by the following. \\
NOTE 3 The requirements of EN 60065 may also be used to meet safety requirements for multimedia equipment. See IEC Guide 112, Guide on the safety of multimedia equipment. For television sets EN 60065 applies.
\end{tabular} & P \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
- primarily uses headphones or earphones that can be worn in or on or around the ears; and \\
- allows the user to walk around while in use. \\
NOTE 1 Examples are hand-held or body-worn portable CD players, MP3 audio players, mobile phones with MP3 type features, PDA's or similar equipment. \\
A personal music player and earphones or headphones intended to be used with personal music players shall comply with the requirements of this sub-clause. \\
The requirements in this sub-clause are valid for music or video mode only. \\
The requirements do not apply: \\
- while the personal music player is connected to an external amplifier; or \\
- while the headphones or earphones are not used. \\
NOTE 2 An external amplifier is an amplifier which is not part of the personal music player or the listening device, but which is intended to play the music as a standalone music player. \\
The requirements do not apply to: \\
- hearing aid equipment and professional equipment; \\
NOTE 3 Professional equipment is equipment sold through special sales channels. All products sold through normal electronics stores are considered not to be professional equipment.
\end{tabular} & & \\
\hline \begin{tabular}{l}
- analogue personal music players (personal music players without any kind of digital processing of the sound signal) that are brought to the market before the end of 2015 . \\
NOTE 4 This exemption has been allowed because this technology is falling out of use and it is expected that within a few years it will no longer exist. This exemption will not be extended to other technologies. \\
For equipment which is clearly designed or intended for use by young children, the limits of EN 71-1 apply.
\end{tabular} & Not such equipment & N/A \\
\hline \begin{tabular}{l}
Zx. 2 Equipment requirements \\
No safety provision is required for equipment that complies with the following: \\
- equipment provided as a package (personal music player with its listening device), where the acoustic output LAeq, T is \(\leq 85 \mathrm{dBA}\) measured while playing the fixed "programme simulation noise" as described in EN 50332-1; and \\
- a personal music player provided with an analogue electrical output socket for a listening device, where the electrical output is \(\leq 27 \mathrm{mV}\) measured as described in EN 50332-2, while playing the fixed "programme simulation noise" as described in EN 50332-1.
\end{tabular} & Not such equipment & N/A \\
\hline
\end{tabular}

Page 4 of 17
Report No.: CBS2108WDG0169-2
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
NOTE 1 Wherever the term acoustic output is used in this clause, the 30 s A-weighted equivalent sound pressure level LAeq, T is meant. See also Zx. 5 and Annex Zx. \\
All other equipment shall: \\
a) protect the user from unintentional acoustic outputs exceeding those mentioned above; and \\
b) have a standard acoustic output level not exceeding those mentioned above, and automatically return to an output level not exceeding those mentioned above when the power is switched off; and
\end{tabular} & & \\
\hline \begin{tabular}{l}
c) provide a means to actively inform the user of the increased sound pressure when the equipment is operated with an acoustic output exceeding those mentioned above. Any means used shall be acknowledged by the user before activating a mode of operation which allows for an acoustic output exceeding those mentioned above. The acknowledgement does not need to be repeated more than once every 20 h of cumulative listening time; and \\
NOTE 2 Examples of means include visual or audible signals. Action from the user is always required. \\
NOTE 3 The 20 h listening time is the accumulative listening time, independent how often and how long the personal music player has been switched off. \\
d) have a warning as specified in Zx .3 ; and \\
e) not exceed the following: \\
1) equipment provided as a package (player with Its listening device), the acoustic output shall be \(\leq 100 \mathrm{dBA}\) measured while playing the fixed "programme simulation noise" described in EN 50332-1; and \\
2) a personal music player provided with an analogue electrical output socket for a listening device, the electrical output shall be \(\leq 150 \mathrm{mV}\) measured as described in EN 50332-2, while playing the fixed "programme simulation noise" described in EN 50332-1. \\
For music where the average sound pressure (long term LAeq,T) measured over the duration of the song is lower than the average produced by the programme simulation noise, the warning does not need to be given as long as the average sound pressure of the song is below the basic limit of 85 dBA. In this case \(T\) becomes the duration of the song. \\
NOTE 4 Classical music typically has an average sound pressure (long term LAea,T) which is much lower than the average programme simulation noise. Therefore, if the player is capable to analyse the song and compare it with the programme simulation noise, the warning does not need to be given as long as the average sound pressure of the song is below the basic limit of 85 dBA. \\
For example, if the player is set with the programme simulation noise to 85 dBA , but the average music level of the song is only 65 dBA , there is no need to give a warning or ask an
\end{tabular} & Not such equipment & N/A \\
\hline
\end{tabular}

Page 5 of 17
Report No.: CBS2108WDG0169-2
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline acknowledgement as long as the average sound level of the song is not above the basic limit of 85 dBA . & & \\
\hline \begin{tabular}{l}
Zx. 3 Warning \\
The warning shall be placed on the equipment, or on the packaging, or in the instruction manual and shall consist of the following: \\
the symbol of Figure 1 with a minimum height of 5 mm ; and \\
the following wording, or similar: \\
"To prevent possible hearing damage, do not listen at high volume levels for long periods." \\
Figure 1 - Warning label (IEC 60417-6044) \\
Alternatively, the entire warning may be given through the equipment display during use, when the user is asked to acknowledge activation of the higher level.
\end{tabular} & Not such equipment & N/A \\
\hline Zx. 4 Requirements for listening devices (headpho & nes and earphones) & N/A \\
\hline \begin{tabular}{l}
Zx.4.1 Wired listening devices with analogue input \\
With 94 dBA sound pressure output LAeq, T , the input voltage of the fixed "programme simulation noise" described in EN \(50332-2\) shall be \(\geq 75 \mathrm{mV}\). \\
This requirement is applicable in any mode where the headphones can operate (active or passive), including any available setting (for example built-in volume level control). \\
NOTE The values of \(94 \mathrm{dBA}-75 \mathrm{mV}\) correspond with \(85 \mathrm{dBA}-27 \mathrm{mV}\) and \(100 \mathrm{dBA}-150 \mathrm{mV}\).
\end{tabular} & Not such equipment & N/A \\
\hline \begin{tabular}{l}
Zx.4.2 Wired listening devices with digital input With any playing device playing the fixed "programme simulation noise" described in EN 50332-1 (and respecting the digital interface standards, where a digital interface standard exists that specifies the equivalent acoustic level), the acoustic output LAeq, T of the listening device shall be \(\leq 100 \mathrm{dBA}\). \\
This requirement is applicable in any mode where
\end{tabular} & Not such equipment & N/A \\
\hline
\end{tabular}

Page 6 of 17
Report No.: CBS2108WDG0169-2
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
the headphones can operate, including any available setting (for example built-in volume level control, additional sound feature like equalization, etc.). \\
NOTE An example of a wired listening device with digital input is a USB headphone.
\end{tabular} & & \\
\hline & \begin{tabular}{l}
Zx.4.3 Wireless listening devices \\
In wireless mode: \\
with any playing and transmitting device playing the fixed programme simulation noise described in EN 50332-1; and \\
respecting the wireless transmission standards, where an air interface standard exists that specifies the equivalent acoustic level; and \\
with volume and sound settings in the listening device (for example built-in volume level control, additional sound feature like equalization, etc.) set to the combination of positions that maximize the measured acoustic output for the abovementioned programme simulation noise, the acoustic output LAeq,T of the listening device shall be \(\leq 100 \mathrm{dBA}\). \\
NOTE An example of a wireless listening device is a Bluetooth headphone.
\end{tabular} & Not such equipment & N/A \\
\hline & \begin{tabular}{l}
Zx. 5 Measurement methods \\
Measurements shall be made in accordance with EN \(50332-1\) or EN 50332-2 as applicable. Unless stated otherwise, the time interval T shall be 30 s . \\
NOTE Test method for wireless equipment provided without listening device should be defined.
\end{tabular} & Not such equipment & N/A \\
\hline 2.7.1 & \begin{tabular}{l}
Replace the subclause as follows: \\
Basic requirements \\
To protect against excessive current, short-circuits and earth faults in PRIMARY CIRCUITS, protective devices shall be included either as integral parts of the equipment or as parts of the building installation, subject to the following, a), b) and c): \\
a) except as detailed in b) and c), protective devices necessary to comply with the requirements of 5.3 shall be included as parts of the equipment; \\
b) for components in series with the mains input to the equipment such as the supply cord, appliance coupler, r.f.i. filter and switch, short-circuit and earth fault protection may be provided by protective devices in the building installation;
\end{tabular} & Protective devices included as integral parts of the equipment & P \\
\hline & c) it is permitted for PLUGGABLE EQUIPMENT TYPE B or PERMANENTLY CONNECTED EQUIPMENT, to rely on dedicated overcurrent and short-circuit protection in the building installation, provided that the means of protection, e.g. fuses or circuit breakers, is fully specified in the installation & Not such equipment & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
instructions. \\
If reliance is placed on protection in the building installation, the installation instructions shall so state, except that for PLUGGABLE EQUIPMENT TYPE A the building installation shall be regarded as providing protection in accordance with the rating of the wall socket outlet.
\end{tabular} & & \\
\hline 2.7.2 & This subclause has been declared 'void'. & & N/A \\
\hline 3.2.3 & Delete the NOTE in Table 3A, and delete also in this table the conduit sizes in parentheses. & Deleted & N/A \\
\hline 3.2.5.1 & \begin{tabular}{l}
Replace "60245 IEC 53 " by "H05 RR-F"; \\
"60227 IEC 52" by "H03 VV-F or H03 VVH2-F"; \\
"60227 IEC 53" by "H05 VV-F or H05 VVH2-F2". \\
In Table 3B, replace the first four lines by the following: \\
Up to and including \(6 \mid \quad 0,75\) a) \(\mid\) Over 6 up to and including \(10 \mid(0,75)^{\text {b }} \quad 1,0 \quad\) | Over 10 up to and including \(16 \mid(1,0)^{\text {c }} \quad 1,5 \quad\) | In the conditions applicable to Table 3B delete the words "in some countries" in condition a). In NOTE 1, applicable to Table 3B, delete the second sentence.
\end{tabular} & Replaced & P \\
\hline \[
\begin{aligned}
& \hline 3.2 .5 .1 \\
& \text { (A2:2013) }
\end{aligned}
\] & NOTE Z1 The harmonised code designations corresponding to the IEC cord types are given in Annex ZD & & P \\
\hline 3.3.4 & \begin{tabular}{l}
In Table 3D, delete the fourth line: conductor sizes for 10 to 13 A , and replace with the following: \\
Over 10 up to and including \(16 \mid 1,5\) to \(2,5 \mid 1,5\) to 4 | \\
Delete the fifth line: conductor sizes for 13 to 16 A
\end{tabular} & No wiring terminals & N/A \\
\hline \[
\begin{array}{|l|}
\hline 4.3 .13 .6 \\
\text { (A1:2010) }
\end{array}
\] & Replace the existing NOTE by the following: NOTE Z1 Attention is drawn to: 1999/519/EC: Council Recommendation on the limitation of exposure of the general public to electromagnetic fields 0 Hz to 300 GHz , and 2006/25/EC: Directive on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artifical optical radiation). & Replaced & N/A \\
\hline & Standards taking into account mentioned Recommendation and Directive which demonstrate compliance with the applicable EU Directive are indicated in the OJEC. & & N/A \\
\hline Annex H & \begin{tabular}{l}
Replace the last paragraph of this annex by: At any point 10 cm from the surface of the OPERATOR ACCESS AREA, the dose rate shall not exceed \(1 \mu \mathrm{~Sv} / \mathrm{h}(0,1 \mathrm{mR} / \mathrm{h})\) (see NOTE). Account is taken of the background level. Replace the notes as follows: \\
NOTE These values appear in Directive
\end{tabular} & Replaced & N/A \\
\hline
\end{tabular}

Page 8 of 17
Report No.: CBS2108WDG0169-2
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{|l|l|l|c|}
\hline \begin{tabular}{l}
96/29/Euratom. \\
Delete NOTE 2.
\end{tabular} & & \\
\hline \begin{tabular}{l}
Bibliograph \\
y
\end{tabular} & Additional EN standards. & & - \\
\hline
\end{tabular}}
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline ZA & \begin{tabular}{l}
NORMATIVE REFERENCES TO INTERNATIONAL PUBLICATIONS WITH THEIR \\
CORRESPONDING EUROPEAN PUBLICATIONS
\end{tabular} & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
ZB ANNEX (normative) \\
SPECIAL NATIONAL CONDITIONS (EN)
\end{tabular}} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 1.2.4.1 & In Denmark, certain types of Class I appliances (see 3.2.1.1) may be provided with a plug not establishing earthing conditions when inserted into Danish socket-outlets. & The manufacturer commits to fulfil the requirement when the product will be sold in Denmark. & P \\
\hline \[
\begin{array}{|l|}
\hline 1.2 .13 .14 \\
\text { (A11:2009) } \\
\hline
\end{array}
\] & In Norway and Sweden, for requirements see 1.7.2.1 and 7.3 of this annex. & No such construction & N/A \\
\hline \[
\begin{aligned}
& \hline 1.5 .7 .1 \\
& \text { (A11:2009) }
\end{aligned}
\] & In Finland, Norway and Sweden, resistors bridging BASIC INSULATION in CLASS I PLUGGABLE EQUIPMENT TYPE A must comply with the requirements in 1.5.7.1. In addition when a single resistor is used, the resistor must withstand the resistor test in 1.5.7.2. & No such components. & N/A \\
\hline 1.5.8 & In Norway, due to the IT power system used (see annex V, Figure V.7), capacitors are required to be rated for the applicable line-to-line voltage (230 V). & Class I equipment. Components connected between line and neutra//earth are certified components rated minimum 250V (for Norway) & P \\
\hline 1.5.9.4 & In Finland, Norway and Sweden, the third dashed sentence is applicable only to equipment as defined in 6.1.2.2 of this annex. & The EUT is not connected to telecommunication networks. & N/A \\
\hline
\end{tabular}

Page 9 of 17
Report No.: CBS2108WDG0169-2
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|c|}{ZB ANNEX (normative) SPECIAL NATIONAL CONDITIONS (EN)} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \begin{tabular}{l}
1.7.2.1 \\
1.7.2.1 \\
(A11:2009)
\end{tabular} & \begin{tabular}{l}
In Finland, Norway and Sweden, CLASS I PLUGGABLE EQUIPMENT TYPE A intended for connection to other equipment or a network shall, if safety relies on connection to protective earth or if surge suppressors are connected between the network terminals and accessible parts, have a marking stating that the equipment must be connected to an earthed mains socket-outlet. \\
The marking text in the applicable countries shall be as follows: \\
In Finland: "Laite on liitettävä suojakoskettimilla varustettuun pistorasiaan" \\
In Norway: "Apparatet må tilkoples jordet stikkontakt" \\
In Sweden: "Apparaten skall anslutas till jordat uttag" \\
In Norway and Sweden, the screen of the cable distribution system is normally not earthed at the entrance of the building and there is normally no equipotential bonding system within the building. Therefore the protective earthing of the building installation need to be isolated from the screen of a cable distribution system. \\
It is however accepted to provide the insulation external to the equipment by an adapter or an interconnection cable with galvanic isolator, which may be provided by e.g. a retailer. \\
The user manual shall then have the following or similar information in Norwegian and Swedish language respectively, depending on in what country the equipment is intended to be used in: \\
"Equipment connected to the protective earthing of the building installation through the mains connection or through other equipment with a connection to protective earthing - and to a cable distribution system using coaxial cable, may in some circumstances create a fire hazard. Connection to a cable distribution system has therefore to be provided through a device providing electrical isolation below a certain frequency range (galvanic isolator, see EN 60728-11)."
\end{tabular} & Not such equipment & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{ZB ANNEX (normative) SPECIAL NATIONAL CONDITIONS (EN)} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline & \begin{tabular}{l}
NOTE In Norway, due to regulation for installations of cable distribution systems, and in Sweden, a galvanic isolator shall provide electrical insulation below 5 MHz . The insulation shall withstand a dielectric strength of \(1,5 \mathrm{kV}\) r.m.s., 50 Hz or 60 Hz , for 1 min . \\
Translation to Norwegian (the Swedish text will also be accepted in Norway): \\
"Utstyr som er koplet til beskyttelsesjord via nettplugg og/eller via annet jordtilkoplet utstyr - og er tilkoplet et kabel-TV nett, kan forårsake brannfare. For å unngå dette skal det ved tilkopling av utstyret til kabel-TV nettet installeres en galvanisk isolator mellom utstyret og kabel- TV nettet." Translation to Swedish: \\
"Utrustning som är kopplad till skyddsjord via jordat vägguttag och/eller via annan utrustning och samtidigt är kopplad till kabel-TV nät kan i vissa fall medföra risk főr brand. Főr att undvika detta skall vid anslutning av utrustningen till kabel-TV nät galvanisk isolator finnas mellan utrustningen och kabel-TV nätet."
\end{tabular} & Not such equipment & N/A \\
\hline \[
\begin{aligned}
& \hline 1.7 .2 .1 \\
& \text { (A2:2013) }
\end{aligned}
\] & \begin{tabular}{l}
In Denmark, CLASS I PLUGGABLE EQUIPMENT \\
TYPE A intended for connection to other equipment or a network shall, if safety relies on connection to protective earth or if surge suppressors are connected between the network terminals and accessible parts, have a marking stating that the equipment must be connected to an earthed mains socket-outlet. \\
The marking text in Denmark shall be as follows: In Denmark: "Apparatets stikprop skal tilsluttes en stikkontakt med jord, som giver forbindelse til stikproppens jord."
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Denmark. & P \\
\hline \[
\begin{array}{|l|}
\hline 1.7 .5 \\
\\
\\
1.7 .5 \\
\text { (A11:2009) }
\end{array}
\] & \begin{tabular}{l}
In Denmark, socket-outlets for providing power to other equipment shall be in accordance with the Heavy Current Regulations, Section 107-2-D1, Standard Sheet DK 1-3a, DK 1-5a or DK 1-7a, when used on Class I equipment. For STATIONARY EQUIPMENT the socket-outlet shall be in accordance with Standard Sheet DK 1-1b or DK 15a. \\
For CLASS II EQUIPMENT the socket outlet shall be in accordance with Standard Sheet DKA 1-4a.
\end{tabular} & No socket-outlet provided & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
ZB ANNEX (normative) \\
SPECIAL NATIONAL CONDITIONS (EN)
\end{tabular}} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \[
\begin{aligned}
& \hline 1.7 .5 \\
& \text { (A2:2013) }
\end{aligned}
\] & \begin{tabular}{l}
In Denmark, socket-outlets for providing power to other equipment shall be in accordance with the DS 60884-2-D1:2011. \\
For class I equipment the following Standard Sheets are applicable: DK 1-3a, DK 1-1c, \\
DK 1-1d, DK 1-5a or DK 1-7a, with the exception for STATIONARY EQUIPMENT where the socketoutlets shall be in accordance with Standard Sheet DK 1-1b, DK 1-1c, DK 1-1d or DK 1-5a. \\
Socket outlets intended for providing power to Class Il apparatus with a rated current of \(2,5 \mathrm{~A}\) shall be in accordance with DS 60884-2-D1 standard sheet DKA 1-4a. Other current rating socket outlets shall be in compliance with by DS 60884-2-D1 Standard Sheet DKA 1-3a or DKA 1-3b. Justification the Heavy Current Regulations, 6c
\end{tabular} & No socket-outlet provided & N/A \\
\hline 2.2.4 & In Norway, for requirements see 1.7.2.1, 6.1.2.1 and 6.1.2.2 of this annex. & No TNV circuit & N/A \\
\hline 2.3.2 & In Finland, Norway and Sweden there are additional requirements for the insulation. See 6.1.2.1 and 6.1.2.2 of this annex. & No TNV circuit & N/A \\
\hline 2.3.4 & In Norway, for requirements see 1.7.2.1, 6.1.2.1 and 6.1.2.2 of this annex. & No TNV circuit & N/A \\
\hline 2.6.3.3 & In the United Kingdom, the current rating of the circuit shall be taken as 13 A , not 16 A . & Considered & P \\
\hline 2.7.1 & In the United Kingdom, to protect against excessive currents and short-circuits in the PRIMARY CIRCUIT of DIRECT PLUG-IN EQUIPMENT, tests according to 5.3 shall be conducted, using an external protective device rated 30 A or 32 A . If these tests fail, suitable protective devices shall be included as integral parts of the DIRECT PLUG-IN EQUIPMENT, so that the requirements of 5.3 are met. & Not direct plug-in equipment & N/A \\
\hline 2.10.5.13 & In Finland, Norway and Sweden, there are additional requirements for the insulation, see 6.1.2.1 and 6.1.2.2 of this annex. & No TNV circuit. & N/A \\
\hline 3.2.1.1 & \begin{tabular}{l}
In Switzerland, supply cords of equipment having a RATED CURRENT not exceeding 10 A shall be provided with a plug complying with SEV 1011 or IEC 60884-1 and one of the following dimension sheets: \\
SEV 6532-2.1991 Plug Type 15 3P+N+PE \(250 / 400\) V, 10 A
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Switzerland. & P \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
ZB ANNEX (normative) \\
SPECIAL NATIONAL CONDITIONS (EN)
\end{tabular}} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 3.2.1.1 & \begin{tabular}{l}
In Spain, supply cords of single-phase equipment having a rated current not exceeding 10 A shall be provided with a plug according to UNE 20315:1994. Supply cords of single-phase equipment having a rated current not exceeding 2,5 A shall be provided with a plug according to UNE-EN 50075:1993. \\
CLASS I EQUIPMENT provided with socket-outlets with earth contacts or which are intended to be used in locations where protection against indirect contact is required according to the wiring rules, shall be provided with a plug in accordance with standard UNE 20315:1994. \\
If poly-phase equipment is provided with a supply cord with a plug, this plug shall be in accordance with UNE-EN 60309-2.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Spain. & P \\
\hline 3.2.1.1 & \begin{tabular}{l}
In the United Kingdom, apparatus which is fitted with a flexible cable or cord and is designed to be connected to a mains socket conforming to BS 1363 by means of that flexible cable or cord and plug, shall be fitted with a 'standard plug' in accordance with Statutory Instrument 1768:1994- The Plugs and Sockets etc. (Safety) Regulations 1994, unless exempted by those regulations. \\
NOTE 'Standard plug' is defined in SI 1768:1994 and essentially means an approved plug conforming to BS 1363 or an approved conversion plug.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in United Kingdom. & P \\
\hline 3.2.1.1 & In Ireland, apparatus which is fitted with a flexible cable or cord and is designed to be connected to a mains socket conforming to I.S. 411 by means of that flexible cable or cord and plug, shall be fitted with a 13 A plug in accordance with Statutory Instrument 525:1997 - National Standards Authority of Ireland (section 28) (13 A Plugs and Conversion Adaptors for Domestic Use) Regulations 1997. & The manufacturer commits to fulfil the requirement when the product will be sold in Ireland & P \\
\hline 3.2.4 & In Switzerland, for requirements see 3.2.1.1 of this annex. & Approved inlet used & P \\
\hline 3.2.5.1 & In the United Kingdom, a power supply cord with conductor of \(1,25 \mathrm{~mm}^{2}\) is allowed for equipment with a rated current over 10 A and up to and including 13 A. & No such power supply cord with conductor of \(1,25 \mathrm{~mm}^{2}\) used & N/A \\
\hline 3.3.4 & \begin{tabular}{l}
In the United Kingdom, the range of conductor sizes of flexible cords to be accepted by terminals for equipment with a RATED CURRENT of over 10 A up to and including 13 A is: \\
- \(1,25 \mathrm{~mm}^{2}\) to \(1,5 \mathrm{~mm}^{2}\) nominal cross-sectional area.
\end{tabular} & No such flexible cord with conductor of more than 1,25 \(\mathrm{mm}^{2}\) used & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
ZB ANNEX (normative) \\
SPECIAL NATIONAL CONDITIONS (EN)
\end{tabular}} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 4.3.6 & In the United Kingdom, the torque test is performed using a socket outlet complying with BS 1363 part 1:1995, including Amendment 1:1997 and Amendment 2:2003 and the plug part of DIRECT PLUG-IN EQUIPMENT shall be assessed to BS 1363: Part 1, 12.1, 12.2, 12.3, 12.9, 12.11, 12.12, 12.13, 12.16 and 12.17, except that the test of 12.17 is performed at not less than \(125^{\circ} \mathrm{C}\). Where the metal earth pin is replaced by an Insulated Shutter Opening Device (ISOD), the requirements of clauses 22.2 and 23 also apply. & Not direct plug-in equipment. & N/A \\
\hline 4.3.6 & In Ireland, DIRECT PLUG-IN EQUIPMENT is known as plug similar devices. Such devices shall comply with Statutory Instrument 526:1997- National Standards Authority of Ireland (Section 28) (Electrical plugs, plug similar devices and sockets for domestic use) Regulations, 1997. & Not direct plug-in equipment. & N/A \\
\hline 5.1.7.1 & \begin{tabular}{l}
In Finland, Norway and Sweden TOUCH CURRENT measurement results exceeding \(3,5 \mathrm{~mA}\) r.m.s. are permitted only for the following equipment: \\
- STATIONARY PLUGGABLE EQUIPMENT TYPE A that \\
is intended to be used in a RESTRICTED ACCESS LOCATION where equipotential bonding has been applied, for example, in a telecommunication centre; and \\
has provision for a permanently connected PROTECTIVE EARTHING CONDUCTOR; and is provided with instructions for the installation of that conductor by a SERVICE PERSON; \\
- STATIONARY PLUGGABLE EQUIPMENT TYPE B; \\
- STATIONARY PERMANENTLY CONNECTED EQUIPMENT.
\end{tabular} & Not exceeding 3,5 mA r.m.s & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|c|}{ZB ANNEX (normative) SPECIAL NATIONAL CONDITIONS (EN)} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \[
\begin{array}{|l}
\hline 6.1 .2 .1 \\
\text { (A1:2010) }
\end{array}
\] & \begin{tabular}{l}
In Finland, Norway and Sweden, add the following text between the first and second paragraph of the compliance clause: \\
If this insulation is solid, including insulation forming part of a component, it shall at least consist of either \\
two layers of thin sheet material, each of which shall pass the electric strength test below, or \\
one layer having a distance through insulation of at least \(0,4 \mathrm{~mm}\), which shall pass the electric strength test below. \\
Alternatively for components, there is no distance through insulation requirements for the insulation consisting of an insulating compound completely filling the casing, so that CLEARANCES and CREEPAGE DISTANCES do not exist, if the component passes the electric strength test in accordance with the compliance clause below and in addition \\
passes the tests and inspection criteria of 2.10.11 with an electric strength test of \(1,5 \mathrm{kV}\) multiplied by 1,6 (the electric strength test of 2.10.10 shall be performed using \(1,5 \mathrm{kV}\)), and \\
is subject to ROUTINE TESTING for electric strength during manufacturing, using a test voltage of \(1,5 \mathrm{kV}\).
\end{tabular} & No TNV circuit. & N/A \\
\hline & \begin{tabular}{l}
It is permitted to bridge this insulation with an optocoupler complying with 2.10.5.4 b). \\
It is permitted to bridge this insulation with a capacitor complying with EN 60384-14:2005, subclass Y2. \\
A capacitor classified \(Y 3\) according to EN 6038414:2005, may bridge this insulation under the following conditions: \\
the insulation requirements are satisfied by having a capacitor classified Y3 as defined by EN 60384-14, which in addition to the Y3 testing, is tested with an impulse test of \(2,5 \mathrm{kV}\) defined in EN 60950-1:2006, 6.2.2.1; \\
the additional testing shall be performed on all the test specimens as described in 60384-14: \\
the impulse test of \(2,5 \mathrm{kV}\) is to be performed before the endurance test in EN 60384-14, in the sequence of tests as described in EN 60384-14.
\end{tabular} & No TNV circuit. & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
SBE ANNEX (normative) \\
SPECIAL NATIONAL CONDITIONS (EN)
\end{tabular}} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 6.1 .2 .2 & \begin{tabular}{l}
In Finland, Norway and Sweden, the exclusions are \\
applicable for PERMANENTLY CONNECTED \\
EQUIPMENT, PLUGGABLE EQUIPMENT TYPE B \\
and equipment intended to be used in a \\
RESTRICTED ACCESS LOCAATION where \\
equipotential bonding has been applied, e.g. in a \\
telecommunication centre, and which has provision \\
for a permanently connected PROTTCCTVE \\
EARTHNG CONDUCTOR and is provided with \\
instructions for the installation of that conductor by a \\
SERVICE PERSON.
\end{tabular} & N/A \\
\hline 7.2 & \begin{tabular}{l}
In Finland, Norway and Sweden, for requirements \\
see 6.1.2.1 and 6.1.2.2 of this annex. \\
The term TELECOMMUNICATION NETWORK in \\
6.1.2 being replaced by the term CABLE \\
DISTRIBUTION SYSTEM.
\end{tabular} & \begin{tabular}{l}
Not connected to the cable \\
distribution system.
\end{tabular} & N/A \\
\hline \begin{tabular}{l}
7.3 \\
(A11:2009)
\end{tabular} & \begin{tabular}{l}
In Norway and Sweden, for requirements see \\
1.2.13.14 and 1.7.2.1 of this annex.
\end{tabular} & \begin{tabular}{l}
Not connected to the cable \\
distribution system.
\end{tabular} & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

> Annex ZD
> (informative)

IEC and CENELEC code designations for flexible cords
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Type of flexible cord} & \multicolumn{2}{|r|}{Code designations} \\
\hline & IEC & CENELEC \\
\hline \multicolumn{3}{|l|}{PVC insulated cords} \\
\hline Flat twin tinsel cord & 60227 IEC 41 & H03VH-Y \\
\hline Light polyvinyl chloride sheathed flexible cord & 60227 IEC 52 & \[
\begin{aligned}
& \text { H03VV-F } \\
& \text { H03VVH2-F }
\end{aligned}
\] \\
\hline Ordinary polyvinyl chloride sheathed flexible cord & 60277 IEC 53 & H05VV-F H05VVH2-F \\
\hline \multicolumn{3}{|l|}{Rubber insulated cords} \\
\hline Braided cord & 60245 IEC 51 & H03RT-F \\
\hline Ordinary tough rubber sheathed flexible cord & 60245 IEC 53 & H05RR-F \\
\hline Ordinary polychloroprene sheathed flexible cord & 60245 IEC 57 & H05RN-F \\
\hline Heavy polychloroprene sheathed flexible cord & 60245 IEC 66 & H07RN-F \\
\hline \multicolumn{3}{|l|}{Cords having high flexibility} \\
\hline Rubber insulated and sheathed cord & 60245 IEC 86 & H03RR-H \\
\hline Rubber insulated, crosslinked PVC sheathed cord & 60245 IEC 87 & H03RV4-H \\
\hline Crosslinked PVC insulated and sheathed cord & 60245 IEC 88 & H03V4V4-H \\
\hline
\end{tabular}

Page 1 of 55
Report No.: CBS2108WDG0169-2
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

\section*{ATTACHMENT TO TEST REPORT IEC 60950-1 \\ (AUSTRALIA/NEW ZEALAND) NATIONAL DIFFERENCES \\ (Information technology equipment-safety)}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Differences according to : AS/NZS 60950.1:2015} \\
\hline TRF template used: & IECEE OD-2020-F3, Ed. 1.1 \\
\hline \multicolumn{2}{|l|}{Attachment Form No. : AU_NZ_ND_IEC60950_1G} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Attachment Originator \(\qquad\) JAS-ANZ \\
Master Attachment 2021-04-19
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Copyright © 2021 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{National Differences} & - \\
\hline Appendix ZZ & \multicolumn{2}{|l|}{Variations to IEC 60950-1, Ed 2.2 (2013) for Australia and New Zealand} & - \\
\hline 1.2 & \multicolumn{2}{|l|}{DEFINITIONS} & P \\
\hline 1.2 & \begin{tabular}{l}
After definition 'PERSON, SERVICE', insert the following new definition: \\
POTENTIAL IGNITION SOURCE.......1.2.12.201
\end{tabular} & Added. & P \\
\hline 1.5 & \multicolumn{2}{|l|}{COMPONENTS} & P \\
\hline 1.5.1 & \begin{tabular}{l}
1. First paragraph, insert the following text after the words 'IEC component standard': \\
'or the relevant Australian/New Zealand Standard.' \\
2. In the Note, insert the following text after the word 'standard': \\
'or an Australian/New Zealand Standard.' \\
3. Second paragraph, delete the words 'without further evaluation'.
\end{tabular} & Added. & P \\
\hline 1.5.2 & \begin{tabular}{l}
1. First paragraph, insert the following text after the word 'standard': \\
'or an Australian/New Zealand Standard.' \\
2. First paragraph, second dash item, second line, insert the following text after the word 'standard': 'or an Australian/New Zealand Standard.' \\
3. First paragraph, second dash item, last line, insert the following text after the word 'standard': 'or an Australian/New Zealand Standard.'
\end{tabular} & Added. & P \\
\hline 1.7 & \multicolumn{2}{|l|}{MARKINGS AND INSTRUCTIONS} & P \\
\hline 1.7.1.3 & Delete existing text and replace with the following: Graphical symbols placed on the equipment as a requirement of this standard, shall be in accordance with IEC 60417 or ISO 3864-2 or ISO 7000, if available. In the absence of suitable symbols, the manufacturer may design specific graphical symbols. Symbols as required by this standard placed on the equipment shall be explained in the user manual & & P \\
\hline 2.9 & \multicolumn{2}{|l|}{ELECTRICAL INSULATION} & P \\
\hline 2.9.2 & Variation Second paragraph, delete the word 'designated' & & P \\
\hline 3.2.5 & \multicolumn{2}{|l|}{POWER SUPPLY CORDS} & P \\
\hline
\end{tabular}

Page 3 of 55
Report No.: CBS2108WDG0169-2
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|l|}{} \\
\hline & Fourth paragraph, after 'IEC 60825-1', insert the following text: or AS/NZS 60825.1 & No lasers. & N/A \\
\hline 4.7 & \multicolumn{2}{|l|}{RESISTANCE TO FIRE} & N/A \\
\hline 4.7 & \begin{tabular}{l}
Addition \\
At the end of Clause 4.7, insert the following text: For alternate tests refer to Clause 4.7.201
\end{tabular} & Insert & - \\
\hline 6 & \multicolumn{2}{|l|}{CONNECTION TO TELECOMMUNICATIONS NETWORKS} & N/A \\
\hline 6.2.2 & \begin{tabular}{l}
Variation \\
For Australia only, delete the first paragraph and Note, and replace with the following: \\
In Australia only, compliance with 6.2 .2 shall be checked by the tests of both 6.2.2.1 and 6.2.2.2
\end{tabular} & No TNV circuit inside the EUT. & N/A \\
\hline 6.2.2.1 & \begin{tabular}{l}
Variation \\
For Australia only, delete the first paragraph including the Notes, and replace with the following: \\
In Australia only, the electrical separation is subjected to 10 impulses of alternating polarity, using the impulse test generator Reference 1 of Table N.1. \\
The interval between successive impulses is 60 s and the initial voltage, Uc , is: \\
(i) for 6.2 .1 a): 7.0 kV for hand-held telephones and for headsets and 2.5 kV for other equipment; and \\
(ii) For 6.2 .1 b) and 6.2 .1 c): 1.5 kV
\end{tabular} & No TNV circuit inside the EUT. & N/A \\
\hline & NOTE 201 The 7 kV impulse simulates lightning surges on typical rural and semi-rural network lines & No TNV circuit inside the EUT. & N/A \\
\hline & NOTE 202 The value of 2.5 kV for 6.2.1 a) was chosen to ensure the adequacy of the insulation concerned and does not necessarily simulate likely overvoltages & No TNV circuit inside the EUT. & N/A \\
\hline 6.2.2.2 & \begin{tabular}{l}
Variation \\
For Australia only, delete the second paragraph including the Note, and replace with the following: In Australia only, the a.c. test voltage is \\
(i) for 6.2.1 a): \(\quad 3 \mathrm{kV}\); and \\
(ii) for 6.2.1b) and 6.2.1c): 1.5 kV
\end{tabular} & No TNV circuit inside the EUT. & N/A \\
\hline & NOTE 201 Where there are capacitors across the insulation under test, it is recommended that d.c. test voltages are used. & No TNV circuit inside the EUT. & N/A \\
\hline & NOTE 202 The 3 kV and 1.5 kV values have been determined considering the low frequency induced voltages from the power supply distribution system. & No TNV circuit inside the EUT. & N/A \\
\hline 7 & CONNECTION TO CABLE DISTRIBUTION NETWOR & & N/A \\
\hline
\end{tabular}

Page 5 of 55
Report No.: CBS2108WDG0169-2
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & follows & & \\
\hline 4.3.8.201 & \begin{tabular}{l}
Products containing coin/button cell batteries and batteries designated R1 \\
The requirements of AS/NZS 60065:2012 Amendment 1:2015, Clause 14.10.201 apply for this Clause.
\end{tabular} & No such battery used & N/A \\
\hline 4.7 & \multicolumn{2}{|l|}{RESISTANCE TO FIRE} & N/A \\
\hline 4.7.3.6 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Addition \\
After Clause 4.7.3.6, add new clauses as follows:
\end{tabular}} & N/A \\
\hline 4.7.201 & \multirow[t]{2}{*}{\begin{tabular}{l}
Resistance to fire-Alternative tests \\
General \\
Parts of non-metallic material shall be resistant to ignition and spread of fire. This requirement does not apply to decorative trims, knobs and other parts unlikely to be ignited or to propagate flames from inside the apparatus, or the following: \\
a) Components that are contained in an enclosure having a flammability category of V-0 according to AS/NZS 60695.11.10 and having openings only for the connecting wires filling the openings completely, and for ventilation not exceeding 1 mm in width regardless of length.
\end{tabular}} & & N/A \\
\hline 4.7.201.1 & & Metallic enclosure used & N/A \\
\hline & \begin{tabular}{l}
b) The following parts which would contribute negligible fuel to a fire: \\
- small mechanical parts, the mass of which does not exceed 4 g , such as mounting parts, gears, cams, belts and bearings; \\
- small electrical components, such as capacitors with a volume not exceeding \(1,750 \mathrm{~mm} 3\), integrated circuits, transistors and optocoupler packages, if these components are mounted on material of flammability category \(\mathrm{V}-1\), or better, according to AS/NZS 60695.11.10
\end{tabular} & Metallic enclosure used & N/A \\
\hline & NOTE In considering how to minimize propagation of fire and what 'small parts are, account should be taken of the cumulative effect of small parts adjacent to each other for the possible effect of propagating the fire from one part to another & Metallic enclosure used & N/A \\
\hline & Compliance shall be checked by the tests of 4.7.201.2, 4.7.201.3, 4.7.201.4 and 4.7.201.5 & Metallic enclosure used & N/A \\
\hline & For the base material of printed boards, compliance shall be checked by the test of 4.7.201.5 & Metallic enclosure used & N/A \\
\hline & \begin{tabular}{l}
The tests shall be carried out on parts of non-metallic material which have been removed from the apparatus. When the glow-wire test is carried out, the parts shall be placed in the same orientation as they would be in normal use. \\
These tests are not carried out on internal wiring
\end{tabular} & Metallic enclosure used & N/A \\
\hline 4.7.201.2 & \begin{tabular}{l}
Testing of non-metallic materials \\
Parts of non-metallic material shall be subject to the glow-wire test of AS/NZS 60695.2.11 which shall be carried out at \(550^{\circ} \mathrm{C}\)
\end{tabular} & Not used & N/A \\
\hline
\end{tabular}

Page 6 of 55
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & 11 Evaluation of test results & \begin{tabular}{l}
withstand the test, the test may be repeated on two further specimens, both of which shall withstand the test. \\
Delete existing text and replace with the following: \\
The duration of burning (tb) shall not exceed 30 s. However, for printed circuit boards, it shall not exceed 15 s
\end{tabular} & & \\
\hline & The needle-flame te parts of material cla AS/NZS 60695.11.10 tested was not thick & shall not be carried out on ied as V-0 or V-1 according provided that the sample han the relevant part & Not used & N/A \\
\hline 4.7.201.4 & Testing in the even If parts, other than glow wire tests of 4 within 30 s after the needle-flame test d on all parts of non-m distance of 50 mm upon by flame durin shielded by a separ needle-flame test need & \begin{tabular}{l}
f non-extinguishing ma \\
osures, do not withstand 01.3 by failure to extingui noval of the glow-wire tip, ed in 4.7.201.3 shall be m allic material which are wi hich are likely to be impin e tests of 4.7.201.3. Part barrier which meets the not be tested.
\end{tabular} & Not used & N/A \\
\hline & NOTE 1 If the enclo wire test the equipm to meet the requirem the need for conseq & e does not withstand the is considered to have fail ts of Clause 4.7.201 withou tial testing. & Not used & N/A \\
\hline & NOTE 2 If other par test due to ignition indicates that burnin onto an external sur the equipment is co the requirements of for consequential te & o not withstand the glowe tissue paper and if this glowing particles can fal underneath the equipme dered to have failed to me use 4.7.201 without the n g & Not used & N/A \\
\hline & NOTE 3 Parts likely are considered to b vertical cylinder hav height equal to the above the point of the with, or in close pro & be impinged upon by the ose within the envelope of a radius of 10 mm and a ht of the flame, positioned material supporting, in con ity to, connections. & Not used & N/A \\
\hline 4.7.201.5 & \begin{tabular}{l}
Testing of printed \\
The base material subjected to the ne 4.7.201.3. The flam the board where the the board is position shall not be applied perforations, unless a POTENTIAL IGNI
\end{tabular} & \begin{tabular}{l}
ards \\
inted boards shall be -flame test of Clause hall be applied to the edge at sink effect is lowest wh as in normal use. The flam an edge, consisting of bro edge is less than 3 mm fr N SOURCE.
\end{tabular} & Not used & N/A \\
\hline
\end{tabular}

Page 8 of 55

\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

\section*{ATTACHMENT TO TEST REPORT IEC 60950-1 with A1:2009 and A2:2013 CANADA NATIONAL DIFFERENCES \\ Information technology equipment - Safety - Part 1: General requirements}
\begin{tabular}{|l|}
\hline Differences according to: CAN/CSA-C22.2 No. 60950-1-07, Amd 1:2011, Amd 2:2014 \\
\hline Attachment Form No.: CA_ND_IEC60950_1g \\
Attachment Originator........................: CSA \\
Master Attachment: Date (2015-05) \\
\hline \begin{tabular}{l}
Copyright © 2015 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), \\
Geneva, Switzerland. All rights reserved.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 1.1 .1 & \begin{tabular}{l}
All equipment is to be designed to allow installation \\
in accordance with the National Electrical Code \\
(NEC), ANSI/NFPA 70, the Canadian Electrical Code \\
(CEC), Part I, CAN/CSA C22.1, and when \\
applicable, the National Electrical Safety Code, IEEE \\
C2. Also, unless marked or otherwise identified, \\
installation is allowed per the Standard for the \\
Protection of Electronic Computer/Data-Processing \\
Equipment, ANSI/NFPA 75.
\end{tabular} & Complied & P \\
\hline 1 \begin{tabular}{ll}
Baby monitors are required to additionally comply \\
with ASTM F2951, Consumer Safety Specification \\
for Baby Monitors.
\end{tabular} & Not such equipment & N/A \\
\hline 1.1 .2 & \begin{tabular}{l}
For Pluggable Equipment Type A, the protection in \\
the installation is assumed to be 20A.
\end{tabular} & Considered & P \\
\hline 1.5 .5 & \begin{tabular}{l}
For lengths exceeding 3.05 m, external \\
interconnecting flexible cord and cable assemblies \\
are required to be a suitable cable type (e.g., DP, \\
CL2) specified in the CEC/NEC. \\
For lengths 3.05 m or less, external interconnecting \\
flexible cord and cable assemblies that are not types \\
specified in the CEC are required to have special \\
construction features and identification markings.
\end{tabular} & \begin{tabular}{l}
The manufacturer commits to \\
fulfil the requirement when the \\
product will be sold in Canada.
\end{tabular} & P \\
\hline 1.7 .1 & \begin{tabular}{l}
Equipment for use on a.c. mains supply systems with \\
a neutral and more than one phase conductor (e.g. \\
120/240 V, 3-wire) require a special marking format \\
for electrical ratings. \\
A voltage rating that exceeds an attachment plug \\
cap rating is only permitted if it does not exceed the \\
extreme operating conditions in Table 2 of CAN/CSA \\
C22.2 No. 235, and if it is part of a range that \\
extends into the Table 2 "Normal Operating \\
Conditions." Likewise, a voltage rating shall not be \\
lower than the specified "Normal Operating \\
Conditions," unless it is part of a range that extends \\
into the "Normal Operating Conditions."
\end{tabular} & P & \\
\hline \begin{tabular}{ll}
Wiring terminals intended to supply Class 2 outputs \\
in accordance with CEC Part 1 or NEC shall be \\
marked with the voltage rating and "Class 2" or \\
equivalent. Marking shall be located adjacent to the \\
terminals and shall be visible during wiring.
\end{tabular} & No such terminal & N/A & \\
\hline 1.7 .7 & & & \\
\hline
\end{tabular}

Page 10 of 55
Report No.: CBS2108WDG0169-2
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 2.5 & Where a fuse is used to provide Class 2, Limited Power Source, or TNV current limiting, it shall not be operator-accessible unless it is not interchangeable. & No such device used & N/A \\
\hline 2.6.3.3 & The first column on Table 2D modified to require, "Smaller of the RATED CURRENT of the equipment or the PROTECTIVE CURRENT RATING of the circuit under consideration." & Modified & P \\
\hline 2.7.1 & \begin{tabular}{l}
Suitable NEC/CEC branch circuit protection rated at the maximum circuit rating is required for all standard supply outlets and receptacles (such as supplied in power distribution units) if the supply branch circuit protection is not suitable. \\
Power distribution transformers distributing power at 100 volts or more, and rated 10 kVA or more, require special transformer overcurrent protection.
\end{tabular} & Protection in primary circuits against over currents provided as an integral part of the equipment. & P \\
\hline 3.2 & Wiring methods (terminals, leads, etc.) used for the connection of the equipment to the mains shall be in accordance with the NEC/CEC. & The manufacturer commits to fulfil the requirement when the product will be sold in Canada. & P \\
\hline 3.2.1 & Power supply cords are required to have attachment plugs rated not less than 125 percent of the rated current of the equipment. & The manufacturer commits to fulfil the requirement when the product will be sold in Canada. & P \\
\hline 3.2.1.2 & Equipment connected to a centralized d.c. power system, and having one pole of the DC mains input terminal connected to the main protective earthing terminal in the equipment, is required to comply with special earthing, wiring, marking and installation instruction requirements. & The equipment is not for connection to a d.c. mains supply. & N/A \\
\hline 3.2.3 & Permanent connection of equipment to the mains supply by a power supply cord is not permitted, except for certain equipment, such as ATMs. & Not permanently connected equipment. & N/A \\
\hline 3.2.5 & \begin{tabular}{l}
Power supply cords are required to be no longer than 4.5 m in length. \\
Minimum cord length is required to be 1.5 m , with certain constructions such as external power supplies allowed to consider both input and output cord lengths into the requirement. \\
Flexible power supply cords are required to be compatible with Article 400 of the NEC, and Tables 11 and 12 of the CEC.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Canada. & P \\
\hline 3.2.9 & Permanently connected equipment is required to have a suitable wiring compartment and wire bending space. & Not permanently connected equipment. & N/A \\
\hline 3.3 & Wiring terminals and associated spacings for field wiring connections shall comply with CSA C22.2 No. 0. & No wiring terminals & N/A \\
\hline 3.3.3 & Wire binding screws are not permitted to attach conductors larger than 10 AWG (\(5.3 \mathrm{~mm}^{2}\)). & No wiring terminals & N/A \\
\hline 3.3.4 & Terminals for permanent wiring, including protective earthing terminals, are required to be suitable for Canadian/US wire gauge sizes, rated 125 percent of the equipment rating, and be specially marked when specified (1.7.7). & No wiring terminals & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 3.3.5 & First column of Table 3E revised to require "Smaller of the RATED CURRENT of the equipment or the PROTECTIVE CURRENT RATING of the circuit under consideration." & No wiring terminals & N/A \\
\hline 3.4.2 & Motor control devices are required for cord-connected equipment with a motor if the equipment is rated more than 12 A , or if the motor has a nominal voltage rating greater than 120 V , or is rated more than \(1 / 3 \mathrm{hp}\) (locked rotor current over 43 A). & No such device & N/A \\
\hline 3.4.8 & Vertically-mounted disconnect switches and circuit breakers are required to have the "on" position indicated by the handle in the up position. & No such Vertically-mounted disconnect switches & N/A \\
\hline 3.4.11 & For computer room applications, equipment with battery systems capable of supplying 750 VA for five minutes are required to have a battery disconnect means that may be connected to the computer room remote power-off circuit. & Not such equipment & N/A \\
\hline 4.3.12 & The maximum quantity of flammable liquid stored in equipment is required to comply with NFPA 30. & No flammable liquids in the equipment. & N/A \\
\hline 4.3.13.5 & Equipment with lasers is required to meet the Canadian Radiation Emitting Devices Act, REDR C1370 and/or Code of Federal Regulations 21 CFR 1040, as applicable. & No such devices. & N/A \\
\hline 4.7 & For computer room applications, automated information storage systems with combustible media greater than \(0.76 \mathrm{~m}^{3}(27 \mathrm{cu} \mathrm{ft})\) are required to have a provision for connection of either automatic sprinklers or a gaseous agent extinguishing system with an extended discharge. & Not such equipment & N/A \\
\hline 4.7.3.1 & For computer room applications, enclosures with combustible material measuring greater than \(0.9 \mathrm{~m}^{2}\) (10 sq ft) or a single dimension greater than 1.8 m (6 ft) are required to have a flame spread rating of 50 or less. For other applications, enclosures with the same dimensions require a flame spread rating of 200 or less. & Not such equipment & N/A \\
\hline & Non-metallic enclosures of equipment for use in spaces used for environmental air (plenums) are required to comply with UL 2043. & Not such equipment & N/A \\
\hline Annex H & Equipment that produces ionizing radiation is required to comply with the Canadian Radiation Emitting Devices Act, REDR C1370 and/or Code of Federal Regulations, 21 CFR 1020, as applicable. & The equipment don't produces ionizing radiation & N/A \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
OTHER DIFFERENCES \\
The following key national differences are based on requirements other than national regulatory requirements
\end{tabular}} & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 1.5.1 & Some components and materials associated with the risk of fire, electric shock, or personal injury are required to have component or material ratings in accordance with the applicable national (Canadian and/or U.S.) component or material standard requirements. These components include: attachment plugs, battery packs (rechargeable type, used with transportable equipment), cathode ray tubes, circuit breakers, communication circuit accessories, connectors (used for current interruption of non-LPS circuits), cord sets and power supply cords, direct plug-in equipment, enclosures (outdoor), flexible cords and cables, fuses (branch circuit), fuseholders, ground-fault current interrupters, industrial control equipment, insulating tape, interconnecting cables, lampholders, limit controls, printed wiring, protectors for communications circuits, receptacles, solid state controls, supplementary protectors, switches (including interlock switches), thermal cutoffs, thermostats, (multi-layer) transformer winding wire, transient voltage surge suppressors, tubing, wire connectors, and wire and cables. & The manufacturer commits to fulfil the requirement when the product will be sold in Canada. & P \\
\hline 1.6.1.2 & A circuit for connection to the DC Mains Supply is classified as either a SELV Circuit, TNV-2 Circuit or Hazardous Voltage Circuit depending on the maximum operating voltage of the supply. This maximum operating voltage shall include consideration of the battery charging "float voltage" associated with the intended supply system, regardless of the marked power rating of the equipment. & The equipment is not for connection to d.c. mains supply. & N/A \\
\hline 2.3.1 & For TNV-2 and TNV-3 circuits with other than ringing signals and with voltages exceeding 42.4 Vpeak or 60 Vd.c., the maximum acceptable current through a 2000 ohm resistor (or greater) connected across the voltage source with other loads disconnected is 7.1 mA peak or 30 mA d.c. under normal operating conditions. & No TNV circuit & N/A \\
\hline 2.3.2.1 & In the event of a single fault between TNV and SELV circuits, the limits of 2.2.3 apply to SELV Circuits and accessible conductive parts. & No TNV circuit & N/A \\
\hline 2.6.2 & Equipment with functional earthing is required to be marked with the functional earthing symbol (IEC 60417-6092). & No functional earthing & N/A \\
\hline 2.6.3.4 & Protective bonding conductors of non-standard protective bonding constructions (e.g., printed circuit traces) may be subjected to the additional limited short circuit test conditions specified. & No such part & N/A \\
\hline 4.2.8.1 & Enclosures around CRTs with a face diameter of 160 mm or more are required to reduce the risk of injury due to the implosion of the CRT. & No such device & N/A \\
\hline
\end{tabular}

Page 13 of 55
Report No.: CBS2108WDG0169-2
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 4.3 .2 & \begin{tabular}{l}
Equipment with handles is required to comply with \\
special loading tests.
\end{tabular} & \begin{tabular}{l}
Two handles provided, applied \\
force 369N for 1 minute on each \\
handle and no damage after \\
test.
\end{tabular} & P \\
\hline 4.3 .8 & \begin{tabular}{l}
Battery packs for both portable and stationary \\
applications are required to comply with special \\
component requirements.
\end{tabular} & No such battery used & N/A \\
\hline 5.1 .8 .3 & \begin{tabular}{l}
Equipment intended to receive telecommunication \\
ringing signals is required to comply with a special \\
touch current measurement tests.
\end{tabular} & \begin{tabular}{l}
Not connected to \\
telecommunication networks.
\end{tabular} & N/A \\
\hline 5.3 .7 & \begin{tabular}{l}
Internal (e.g., card cage) SELV circuit connectors \\
and printed wiring board connectors that are \\
accessibere to the operator and that deliver power are \\
to be overloaded. \\
During abnormal operating testing, if a circuit is \\
interrupted by the opening of a component, the test \\
shall be repeated twice (three tests total) using new \\
components as necessary.
\end{tabular} & Complied & P \\
\hline 6.4 & \begin{tabular}{l}
Equipment intended for connection to \\
telecommunication network outside plant cable is \\
required to be protected against overvoltage from \\
power line crosses in accordance with 6.4 and \\
Annex NAC.
\end{tabular} & \begin{tabular}{l}
Not connected to \\
telecommunication networks.
\end{tabular} & N/A \\
\hline Annex EE & \begin{tabular}{l}
Articulated accessibility probe (Fig EE.3) required for \\
assessing accessibility to document/media \\
shredders instead of the Figure 2A test finger.
\end{tabular} & Not such equipment & N/A \\
\hline M.2 & \begin{tabular}{l}
Continuous ringing signals up to 16 mA only are \\
permitted if fhe equipment is subbected t to special \\
installation and performance restrictions.
\end{tabular} & \begin{tabular}{l}
No phone ringing is generated \\
in the EUT.
\end{tabular} & N/A \\
\hline Annex NAD & \begin{tabular}{l}
Equipment connected to a telecommunication and \\
cable distribution networks and supplied with an \\
earphone intended to be held against, or in the ear is \\
required to comply with special acoustic pressure \\
requirements.
\end{tabular} & Not such equipment & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

\section*{ATTACHMENT TO NATIONAL DIFFERENCE}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{National differences of Switzerland IEC 60950-1, 2nd edition (See also group differences)} & - \\
\hline 1.5.1 & \begin{tabular}{l}
Ordinance on environmentally hazardous substances SR 814.081, Annex 1.7, \\
Mercury - Annex 1.7 of SR 814.81 applies for mercury. \\
Switches containing mercury such as thermostats, relays and level controllers are not allowed.
\end{tabular} & No such device & N/A \\
\hline 1.7.13 & \begin{tabular}{l}
Ordinance on chemical hazardous risk reduction SR 814.81, Annex 2.15 \\
Batteries \\
Annex 2.15 of SR 814.81 applies for batteries containing cadmium and mercury. \\
Note: Ordinance relating to environmentally hazardous substances, SR 814.013 of 1986-06-09 is not longer in force and superseded by SR 814.81 of 2009-02-01 (ChemRRV).
\end{tabular} & No such battery used & N/A \\
\hline 3.2 & \begin{tabular}{l}
Supply cords of portable electrical appliances having a rated current not exceeding 10 A shall be provided with a plug complying with IEC 60884-1(3.ed.) + am1, SEV 1011 and one of the following dimension sheets: \\
- SEV 6533-2:2009 Plug type 11, L + N, 250V 10A \\
- SEV 6534-2:2009 Plug type 12, L + N + PE, 250V 10A \\
- SEV 6532-2:2009 Plug type 15, 3L + N + PE, 250/400V 10A \\
Supply cords of portable electrical appliances having a rated current not exceeding 16 A shall be provided with a plug complying with IEC 60884-1(3.ed.) + am1, SEV 1011 and one of the following dimension sheets: \\
- SEV 5933-2:2009 Plug type 21 L + N, 250 V, 16A \\
- SEV 5934-2:2009 Plug type 23 L + N + PE, 250 V, 16A \\
- SEV 5932-2:2009 Plug type 25 3L + N + PE, 250/400V 16A \\
NOTE 16 A plugs are not often used in Swiss domestic installation system. \\
See TRF template regulatory requirements Switzerland on IECEE Website R.R. TRF templates.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Switzerland. & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ATTACHMENT TO NATIONAL DIFFERENCE} \\
\hline \multicolumn{3}{|l|}{National differences of China IEC 60950-1, 2nd edition} & -- \\
\hline 1.1.2 & \begin{tabular}{l}
Revise the third dashed paragraph as: \\
- equipment intended to be used in vehicles, on board ships or aircraft, at altitudes greater than 5000m;
\end{tabular} & Revised & N/A \\
\hline 1.4.5 & \begin{tabular}{l}
At the end of the third dashed paragraph ,added following paragraph: \\
If the equipment is intended for direct connection to an AC mains supply, the tolerances on RATED VOLTAGE shall be taken as +10\%,-10\% unless a wider tolerance is declared by the manufacturer. Delete the contents which behind the first dash.
\end{tabular} & Considered & P \\
\hline 1.4.12.1 & \begin{tabular}{l}
Tma in clause 1.4.12.1 amended as: \\
Tma: is the maximum ambient temperature permitted by the manufacturer's specification, or \(35^{\circ} \mathrm{C}\), whichever is greater. \\
And note 1: for equipment not to be operated at tropical climatic conditions, Tma: is the maximum ambient temperature permitted by the manufacturer's specification, or \(25^{\circ} \mathrm{C}\), whichever is greater. \\
Add note 2: for equipment is to be operated at 2000m-5000m above sea leave, its temperature test conditions and temperature limits are considered.
\end{tabular} & Considered & P \\
\hline 1.5.2 & \begin{tabular}{l}
Add a note behind the first dash : \\
A component used shall comply with related requirements corresponding altitude of 5000 m .
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in China. & P \\
\hline 1.7 & Add one paragraph before the last paragraph: The required marking and instruction should be given in normative Chinese unless otherwise specified. & The manufacturer commits to fulfil the requirement when the product will be sold in China. & P \\
\hline 1.7.1 & \begin{tabular}{l}
Based on the AC mains supply of China, the RATED VOLTAGE should be 220 V (single phase) or 380 V (three-phases) for single rated voltage, for RATED VOLTAGE RANGE, it should cover 220 V or 380 V (three-phases), for multiple RATED VOLTAGES, one of them should be 220 V or 380 V (three-phases) and set on 220 V or 380 V (three-phases) when manufactured. \\
And the RATED FREQUENCY or RATED FREQUENCY RANGE should be 50 Hz or include 50 Hz .
\end{tabular} & The EUT is operated at 100240 Vac voltage, \(50 / 60 \mathrm{~Hz}\) frequency, include the 220Vac 50 Hz . & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|c|}{ATTACHMENT TO NATIONAL DIFFERENCE} \\
\hline 1.7.2.1 & \begin{tabular}{l}
Add requirements of warning for equipment intended to be used at altitudes not exceeding 2000 m or at non-tropical climate regions: \\
For equipment intended to be used at altitude not exceeding 2000 m , a warning label containing the following or a similar appropriate wording or a symbol as in annex DD shall fixed to the equipment at readily visible place. \\
"Only used at altitude not exceeding 2000m." \\
If only symbol used, the explanation of the symbol shall be contained in the instruction manual. For equipment intended to be used in not-tropical climate regions, a warning label containing the following or a similar appropriate wording or a symbol as in annex DD shall fixed to the equipment at readily visible place. \\
"Only used in not-tropical climate regions." \\
If only symbol used, the explanation of the symbol shall be contained in the instruction manual. \\
The above statements shall be given in a language acceptable to the regions where the apparatus is intended to be used.
\end{tabular} & Altitude up to 5000 m considered & N/A \\
\hline 2.7.1 & \begin{tabular}{l}
Amended as: \\
Protection in PRIMARY CIRCUITS against overcurrent short-circuits and earth faults shall be provided as an integral part of the equipment except special provisions. And the protective device shall meet the requirement of Clause 5.3. \\
Delete note of Clause 2.7.1.
\end{tabular} & Protection in primary circuits against over currents provided as an integral part of the equipment. & P \\
\hline 2.9 & \begin{tabular}{l}
Humidity conditioning \\
This section applies for equipment to be operated at tropical climatic conditions, humidity conditioning dealt with tropical climatic conditions. For equipment not to be operated at tropical climatic conditions, its humidity conditioning complies with rules of CTL 624/07.
\end{tabular} & Considered & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ATTACHMENT TO NATIONAL DIFFERENCE} \\
\hline 2.9.2 & \begin{tabular}{l}
First section of Clause 2.9.2 amended as two sections: \\
Where required by 2.9.1, 2.10.8.3, 2.10.10 or 2.10.11, humidity conditioning is conducted for 120 h in a cabinet or room containing air with ambient temperature \(40 \pm 2^{\circ} \mathrm{C}\) and a relative humidity of \((93 \pm 3) \%\). During this conditioning the component or subassembly is not energized. \\
For equipment not to be operated at tropical climatic conditions, Where required by 2.9.1, 2.10.8.3, 2.10 .10 or 2.10 .11 , humidity conditioning is conducted for 48 h in a cabinet or room containing air with a relative humidity of \((93 \pm 3) \%\). The temperature of the air, at all places where samples can be located, is maintained within \(2^{\circ} \mathrm{C}\) of any convenient value \(t\) between \(20^{\circ} \mathrm{C}\) and \(30^{\circ} \mathrm{C}\) such that condensation does not occur. \\
Due to pretreatment of equipment operated at high altitude area is humidity conditioning withstand hot shock, specific requirements are to be considered. \\
Add note: For equipment to be operated at 2000 m 5000m above sea level, assessment and requirement of humidity conditioning for Insulation material properties are considered.
\end{tabular} & Performed at \(95 \%\) R.H., \(40^{\circ} \mathrm{C}\), for 120h & P \\
\hline 2.10.3.1 & Change the third paragraph of Clause 2.10.3.1 to be: These requirements apply for equipment to be operated up to 2000 m above sea level. For equipment to be operated at more than 2000 m above sea level and up to 5000 m above sea level, the minimum CLEARANCE shall be multiplied by the factor 1.48 corresponding altitude of 5000 m given in Table A. 2 of GB/T 16935.1. For equipment to be operated at more than 5000 m above sea level, the minimum CLEARANCE shall be multiplied by the factor given in Table A. 2 of GB/T 16935.1. Linear interpolation is permitted between the nearest two points in Table A.2. The calculated minimum CLEARANCE using this multiplication factor shall be rounded up to the next higher \(0,1 \mathrm{~mm}\) increment. & Considered & P \\
\hline 2.10.3.4 & \begin{tabular}{l}
Add a new section above Table 2 K and in Clause 2.10.3.4: minimum CLEARANCES determined by above rules apply for equipment to be operated up to 2000 m above sea level. For equipment to be operated at \(2000 \mathrm{~m}-5000 \mathrm{~m}\) above sea level, the minimum CLEARANCE shall be multiplied by the factor 1.48 corresponding altitude of 5000 m given in Table A. 2 of GB/T 16935.1. For equipment to be operated at more than 5000 m above sea level, the minimum CLEARANCE shall be multiplied by the factor given in Table A. 2 of GB/T 16935.1. \\
Add "(apply for up to 2000m)" in header of Table \(2 \mathrm{~K}, ~ 2 \mathrm{~L}\) and 2 M .
\end{tabular} & Considered & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ATTACHMENT TO NATIONAL DIFFERENCE} \\
\hline 3.2.1.1 & Add on paragraph before the last paragraph: Plugs connected to AC mains supply shall comply with GB 1002 or GB 1003 or GB/T 11918 as applicable. & The manufacturer commits to fulfil the requirement when the product will be sold in China. & P \\
\hline 4.2.8 & \begin{tabular}{l}
Clause 4.2.8 cathode ray tubes quoted Clause 18 of GB8898-2011. \\
Delete note of Clause 4.2.8.
\end{tabular} & No such part & N/A \\
\hline Annex E & \begin{tabular}{l}
Last section amended as: \\
For comparison of winding temperatures determined by the resistance method of this annex with the temperature limits of Table 4B, \(35^{\circ} \mathrm{C}\) shall be added to the calculated temperature rise. And add note: for equipment not to be operated at tropical climatic conditions, \(25^{\circ} \mathrm{C}\) shall be added to the calculated temperature rise to compare with the temperature of Table 4B.
\end{tabular} & & N/A \\
\hline G. 6 & \begin{tabular}{l}
Change the second section of Clause G. 6 to be: for equipment to be operated at \(2000 \mathrm{~m}-5000 \mathrm{~m}\) above sea level, the minimum CLEARANCE shall be multiplied by the factor 1.48 corresponding altitude of 5000 m given in Table A. 2 of GB/T 16935.1. For equipment to be operated at more than 5000 m above sea level, the minimum CLEARANCE shall be multiplied by the factor given in Table A. 2 of GB/T 16935.1. Linear interpolation is permitted between the nearest two points in Table A.2. The calculated minimum CLEARANCE using this multiplication factor shall be rounded up to the next higher \(0,1 \mathrm{~mm}\) increment. \\
A component that has been demonstrated to comply with National, Industry standards or the relevant national standard shall be subjected to the applicable tests of this standard as part of the equipment.
\end{tabular} & Considered & P \\
\hline Annex BB & \begin{tabular}{l}
Amended as : \\
The differences between Chinese national standards GB 4943.1-2011 and GB 4943-2001.
\end{tabular} & & P \\
\hline Annex DD & Added annex DD: Instructions of the new safety warning labels. & The manufacturer commits to fulfil the requirement when the product will be sold in China. & P \\
\hline Other amendment s & In accordance with the relevant CTL decisions and the amendments of IEC 60950-1, the specific requirements or mistakes in IEC standard are corrected or editorially modified in this part, Including clause 1.7, 2.1.1.7, 2.9.2, Table 2H, Figure 2H, F.8, F.9, M. 3 and Annex U. & & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ATTACHMENT TO NATIONAL DIFFERENCE} \\
\hline Quoting standards and reference documents & \begin{tabular}{l}
The principles of quoting and referring to other standards in Annex P and reference documents of IEC 60950-1 are as follows: \\
If the date of the reference document is given, only that edition applies, excluding any subsequent corrigenda and amendments. However, parties to agreements based on this part are encouraged to investigate the possibility of applying the most recent editions of the reference documents. For undated references, the latest edition of the referenced document applies, including any corrigenda and amendments. \\
For the usage of international standards in Chinese national standards and industry standards is various, in the aim of achieving easy operation and based on the requirements of GB/T 1.1 and GB/T 20000.2, when quoting an entire international standard in the normative quoting files and reference documents of Annex P of this part, the principles of quotation are as follows: \\
- If there is no national standard or industry standard corresponding to the international standard, then the international standard is quoted; \\
- If there is national standard or industry standard corresponding to the international standard, then either the national or industry standard is quoted; - If the date of the national standard or industry standard is not given, the latest edition of the standard applies; \\
- The national standard or industry standard number, corresponding international standard number and the consistency level code should be identified in parentheses behind the listed national standard or industry standard. \\
When quoting several chapters or clauses of the international standard, the principles of quotation are as follows: \\
- If there is no national standard or industry standard corresponding to the international standard, then the international standard is quoted; \\
- If there is national standard or industry standard corresponding to the international standard, then either the national or industry standard is quoted. \\
Meanwhile, in order to retain the relevant information on international standards, informative annex CC is increased, which gives the table about the comparison of the normative quoting files and reference documents in IEC 60950-1: 2005.
\end{tabular} & Considered & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ATTACHMENT TO NATIONAL DIFFERENCE} \\
\hline \multicolumn{3}{|l|}{National differences Germany IEC 60950-1, 2nd edition + Am 1} & - \\
\hline 1.5 & \begin{tabular}{l}
The moulded plug of plug-in power supplies will be considered as component and will be generally evaluated in Germany according to DIN VDE 06201:2010 respectively DIN VDE 0620-1:2013 and DIN VDE 0620-2-1:2013 \\
After the test according to DIN VDE 0620-2-1:2013, sub-clause 24.2, the plug be shall still pass the test according to DIN VDE 0620-101:1992 clause 7, figure 2 "Gauge for interchangeability" \\
It should be possible to insert the plug without applying an excessive force such that the end surface touches the surface of the gauge
\end{tabular} & Not such equipment & N/A \\
\hline Annex ZC, cl. 1.7.2.1 & \begin{tabular}{l}
According to ProdSG, section 2, clause 4: \\
If certain rules on the use, supplementation or maintenance of an item of technical work equipment or ready-to-use commodity must be observed in order to guarantee safety and health, instructions for use in German must be supplied when it is brought into circulation.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Germany. & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

\section*{ATTACHMENT TO NATIONAL DIFFERENCE}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
National differences of the Denmark \\
IEC 60950-1, 2nd edition (See also group differences)
\end{tabular} & - \\
\hline General & \begin{tabular}{l}
The clauses in this test report form replaces all the clauses in Test Report Form No \\
IECEN60950_1C that deals with Danish differences to IEC \(60950-12^{\text {nd }}\) Ed. (2005) I.e. \\
the Danish differences in the sections ZB and ZC of Test Report Form No \\
IECEN60950_1C are replaced by the clauses in this report form. \\
The reason for the publication of this test report form is the publication of EN 60950- \\
1/A11: 2009. The most significant difference introduced by that CENELEC \\
amendment is the total deletion of all Danish A-deviations.
\end{tabular} & P \\
\hline 1.7 .5 & \begin{tabular}{l}
Certain types of Class I appliances (see 3.2.1.1) may be provided with a plug not \\
establishing earthing conditions when inserted into Danish socket-outlets
\end{tabular} & P \\
\hline \begin{tabular}{lll}
Socket-outlets for providing power to other equipment shall be in accordance with the \\
Heavy Current Regulations, Section 107-2-D1, Standard Sheet DK 1-3a, DK 1-5a or \\
DK 1-7a, when used on Class I equipment. For STATIONARY EQUIPMENT the \\
socket-outlet shall be in accordance with Standard Sheet DK 1-1b or DK 1-5a.
\end{tabular} & N/A \\
\hline 1.7.5 & \begin{tabular}{l}
For CLASS II EQUIPMENT the socket outlet shall be in accordance with Standard \\
Sheet DKA 1-4a.
\end{tabular} & N/A \\
\hline 3.2.1.1 & \begin{tabular}{l}
Supply cords of single-phase equipment having a rated current not exceeding13 A \\
shall be provided with a plug according to the Heavy Current Regulations, Section 107- \\
2-D1. \\
CLASS I EQUIPMENT provided with socket-outlets with earth contacts or which are \\
intended to be used in locations where protection against indirect contact is required \\
according to the wiring rules shall be provided with a plug in accordance with standard \\
sheet DK 2-1a or DK 2-5a. \\
If poly-phase equipment and single-phase equipment having a RATED CURRENT \\
exceeding 13 A is provided with a supply cord with a plug, this plug shall be in \\
accordance with the Heavy Current Regulations, Section 107-2-D1 or EN 60309-2.
\end{tabular} & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

\section*{ATTACHMENT TO NATIONAL DIFFERENCE}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{National differences Israel SI 60950 Part 1 (2015-11) IEC 60950-1 - Edition 2.2: 2013-05} & - \\
\hline 1.6 & Power interface & See below & P \\
\hline 1.6.1 & \begin{tabular}{l}
AC Power distribution systems \\
At the end of the clause, the following note shall be added: \\
Note: \\
In Israel, the clause is subject to the Electricity Law, 1954, Electricity Regulations (Earthings and protective means against electrification for voltages up to \(1,000 \mathrm{~V}\)), 1991 , with their updates.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Israel. & P \\
\hline 1.7 & Markings and instructions & See below & P \\
\hline 1.7.1 & \begin{tabular}{l}
Power rating \\
At the beginning of the clause, subclause 1.7.201 shall be added as follows:
\end{tabular} & See below & P \\
\hline 1.7.201 & \begin{tabular}{l}
Marking in the Hebrew language \\
The marking in the Hebrew language shall be in accordance with the Consumer Protection Order (Marking of goods), 1983 \\
In addition to the marking required by clause 1.7.1, the following details shall be marked in the Hebrew language. \\
1. Name of the apparatus and its commercial designation; \\
2. Manufacturer's name and his address. If the equipment is imported, also the importer's name and his address; \\
3. Manufacturer's registered trademark, if any; \\
4. Name of the model and serial number; \\
5. Country of manufacture. \\
The details shall be marked on the apparatus or on its package, or on a label well attached to the apparatus or its packaging, by bonding or sewing, such that the label cannot be easily removed.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Israel. & P \\
\hline 1.7.2 & Safety instructions and marking & See below & P \\
\hline 1.7.2.1 & \begin{tabular}{l}
General \\
- The following shall be added at the end of the clause: \\
All the instructions and all the warnings related to safety shall be written also in the Hebrew language. \\
- At the end of clause 1, clause 1.201 shall be added as follows:
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Israel. & P \\
\hline 1.201 & \begin{tabular}{l}
Power consumption in standby mode \\
The equipment shall comply with the requirements of the Energy Sources Regulations (Maximum electrical power in standby mode for domestic and office electrical appliances), 2011, with a permitted deviation of up to \(10 \%\).
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Israel. & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ ATTACHMENT TO NATIONAL DIFFERENCE } \\
\hline 2 & \begin{tabular}{l}
Protection from hazards \\
At the end of the clause, clause 2.201 shall be added \\
as follows:
\end{tabular} & See below & P \\
\hline 2.201 & Prevention of electromagnetic interferences & See below & P \\
\hline 2.201 .1 & \begin{tabular}{l}
Emission of electromagnetic interferences shall be \\
tested in accordance with Israeli Standard SI 961 \\
Part 6.1 or in accordance with the Israeli Standard \\
that is an adoption of the International Standard \\
CISPR 32. \\
Note: \\
At the time of writing this Standard, the Israeli \\
Standard that is an adoption of the International \\
Standard CISPR 32 is in preparation. Until \\
publication of the Israeli Standard, the International \\
Standard CISPR 32 may be used for testing the \\
emission of electromagnetic interference. \\
If the apparatus contains transmitters, it shall be \\
tested according to Israeli Standard SI 961 Part 48.1 \\
and according to another relevant part of the SI 961 \\
Part 48 series or from the EN 301 489 series, \\
according to the type of transmitter in the apparatus.
\end{tabular} & product will be sold in Israel.
\end{tabular}\(\quad\)\begin{tabular}{l}
P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & \multicolumn{2}{|l|}{Requirement + Test} & Result - Remark & Verdict \\
\hline \multicolumn{5}{|c|}{ATTACHMENT TO NATIONAL DIFFERENCE} \\
\hline \multirow[t]{8}{*}{Annex P} & \multicolumn{3}{|l|}{- In place of some of the International Standards cited in the Standard and noted in this annex, the following Israeli Standards shall apply:} & \multirow[t]{8}{*}{--} \\
\hline & \begin{tabular}{|c|}
\hline \begin{tabular}{c}
The referenced \\
International \\
Standard
\end{tabular} \\
\hline
\end{tabular} & The substituted Israeli Standard or document & Comments & \\
\hline & \begin{tabular}{l}
IEC 60065: 2001 \\
Amendment 1
\end{tabular} & SI 60065 - Audio, video and similar electronic apparatus - Safety requirements & \begin{tabular}{l}
The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard \\
IEC 60065-Edition 8.0: 2014-06
\end{tabular} & \\
\hline & IEC 60227-1: 2007 & SI 60227 Part 1 - Polyvinyl chloride insulated cables of rated voltages up to and including \(450 / 750 \mathrm{~V}\) : General requirements & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60227-1 - Edition 3.0: 2007-10 & \\
\hline & \begin{tabular}{l}
IEC 60227-2: 1997 \\
Amendment 1: \\
2003
\end{tabular} & SI 60227 Part 2 - Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V: Test methods & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60227-2-Edition 2.1: 2003-04 & \\
\hline & IEC 60245 (all parts) & SI 60245 (all parts) - Rubber insulated cables - Rated voltages up to and including \(450 / 750 \mathrm{~V}\) & The Israeli Standard series, excluding
national modifications and additions, is
identical to the International
Elecertrotechnicact commission Standard
series IEC 60245 (all parts) & \\
\hline & \[
\begin{aligned}
& \hline \text { IEC } 60309 \\
& \text { (all parts) }^{(\text {a) }}
\end{aligned}
\] & SI 1109 Part 1 - Plugs, socketoutlets and couplers for industria purposes: General requirements & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60309-1 - Fourth edition: 1999-02 & \\
\hline & & SI 1109 Part 2 - Plugs, socketoutlets and couplers for industrial purposes: Dimensional interchangeability requirements for pin and contact-tube accessories & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60309-2 - Fourth edition: 1999-4 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

ATTACHMENT TO NATIONAL DIFFERENCE
\begin{tabular}{|c|c|c|}
\hline The referenced International Standard & The substituted Israeli Standard or document & Comments \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { IEC } 60317 \\
& \text { (all parts) }^{(\text {a })}
\end{aligned}
\]} & SI 1067 Part 1 - Enamelled \({ }^{\text {(b) }}\) round copper wires with high mechanical properties & The Israeli Standard is identical to the International Electrotechnical Commission Standard
IEC 317-1: 1980-02 \\
\hline & SI 1067 Part 2 - Self-fluxing enamelled \({ }^{(b)}\) round copper wires & \begin{tabular}{l}
The Israeli Standard is identical to the International Electrotechnical Commission Standard \\
IEC 317-4: 1980-02
\end{tabular} \\
\hline & SI 1067 Part 3 - Enamelled \({ }^{\text {(b) }}\) round copper wires with a temperature index of \(180^{\circ} \mathrm{C}\) & \begin{tabular}{l}
The Israeli Standard is identical to the International Electrotechnical Commission Standard \\
IEC 317-8: 1980-02
\end{tabular} \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { IEC } 60320 \\
& \text { (all parts) }^{(\mathrm{a})}
\end{aligned}
\]} & SI 60320 Part 1 - Appliance couplers for household and similar general purposes: General requirements & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60320-1 - Edition 2.1: 2007-11 \\
\hline & SI 60320 Part 2.1 - Appliance couplers for household and similar general purposes: Sewing machine couplers & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60320-2-1 - Second edition: 2000-07 \\
\hline & SI 60320 Part 2.2 - Appliance couplers for household and similar general purposes: Interconnection couplers for household and similar equipment & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60320-2-2 - Second edition: 1998-08 \\
\hline & SI 60320 Part 2.3 - Appliance couplers for household and similar general purposes: appliance coupler with a degree of protection higher than IPX0 & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60320-2-3 - First edition: 1998-09 \\
\hline IEC 60364-1: 2001 & Electricity Law, 1954, with its Regulations and updates & - \\
\hline \begin{tabular}{l}
IEC 60730-1: 1999 \\
Amendment 1 \\
(2003)
\end{tabular} & SI 60730 Part 1 - Automatic electrical controls: General requirements & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60730-1 - Edition 5.0: 2013-11 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

\section*{ATTACHMENT TO NATIONAL DIFFERENCE}
\begin{tabular}{|c|c|c|}
\hline The referenced International Standard & The substituted Israeli Standard or document & Comments \\
\hline IEC 60825-1 & SI 60825 Part 1 - Safety of laser products: Equipment classification and requirements & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60825-1 - Second edition: 2007-03 \\
\hline IEC 60825-2 & SI 60825 Part 2 - Safety of laser products: Safety of optical fibre communication systems (OFCS) & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60825-2 - Edition 3.2: 2010-12 \\
\hline IEC 60825-12 & SI 60825 Part 12 - Safety of laser products: Safety of free space optical communication systems used for transmission of information & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60825-12 - First edition: 2004-02 \\
\hline IEC 60947-1: 2004 & SI 60947 Part 1 - Low-voltage switchgear and controlgear: General rules & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60947-1 - Edition 5.0: 2007-06 \\
\hline IEC 60998-1 & SI 60998 Part 1 - Connecting devices for low-voltage circuits for household and similar purposes: General requirements & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60998-1 - Second edition: 2002-12 \\
\hline IEC 60999-1 & SI 60999 Part 1 - Connecting devices - Electrical copper conductors - Safety requirements for screw-type and screwless-type clamping units: General requirements and particular requirements for clamping units for conductors from \(0.2 \mathrm{~mm}^{2}\) up to \(35 \mathrm{~mm}^{2}\) (included) & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60999-1 - Second edition: 1999 \\
\hline IEC 60999-2 & SI 60999 Part 2 - Connecting devices - Electrical copper conductors - Safety requirements for screw-type and screwless-type clamping units: Particular requirements for clamping units for conductors above \(35 \mathrm{~mm}^{2}\) up to \(300 \mathrm{~mm}^{2}\) (included) & The Israeli Standard, excluding national modifications and additions, is identical to the International Electrotechnical Commission Standard IEC 60999-2 - Second edition: 2003-05 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

ATTACHMENT TO NATIONAL DIFFERENCE
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c}
The referenced \\
International \\
Standard
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c}
The substituted Israeli \\
Standard or document
\end{tabular}} & \multicolumn{1}{c|}{ Comments } \\
\hline IEC 61058-1: 2000 & \begin{tabular}{l}
SI 61058 Part 1 - Switches for \\
appliances: General requirements
\end{tabular} & \begin{tabular}{l}
The Israeli Standard, excluding national \\
modifications and additions, is identical \\
to the International Electrotechnical \\
Commission Standard \\
IEC 61058-1 - Edition 3.2: 2008-04
\end{tabular} \\
\hline IEC 62471: 2006 & \begin{tabular}{l}
SI 62471 - Photobiological safety \\
of lamps and lamp systems
\end{tabular} & \begin{tabular}{l}
The Israeli Standard is identical to the \\
International Electrotechnical \\
Commission Standard \\
IEC 62471 (CIE S 009:2002) - \\
First edition: 2006-07
\end{tabular} \\
\hline ISO 262 & \begin{tabular}{l}
SI 876 - ISO general purpose metric \\
screw thread: Basic dimension and \\
selected sizes for screws
\end{tabular} & \begin{tabular}{l}
The Israeli Standard is based on the \\
International Organization for \\
Standardization publications
\end{tabular} \\
ISO R 724-1968 \\
ISO 262 - 1973
\end{tabular}

\section*{Notes:}
(a) In the International Standard series, there are parts not yet adopted as Israeli Standards. This table notes the existing Israeli Standards, and in the Comments column, the corresponding parts of the International Standard series.
(b) Not relevant to the translation.

\section*{- The following shall be added to the annex:}

\section*{Israeli Standards}

SI 32 Part 1.1 - Plugs and socket-outlets for household and similar purposes: Plugs and socket-outlets for single phase up to 16 A - General requirements
SI 961 Part 6.1 - Electromagnetic compatibility: Information technology equipment Radio disturbance characteristics - Limits and methods of measurement
SI 961 Part 6.2 - Electromagnetic compatibility: Information technology equipment Immunity characteristics - Limits and methods of measurement
SI 961 Part 12.3 - Electromagnetic compatibility: Limits - Limits for harmonic current emissions (equipment input current \(\leq 16\) A per phase)
SI 961 Part 12.5 - Electromagnetic compatibility: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current \(\leq 16\) A per phase and subject to conditional connection
SI 961 Part 12.11 - Electromagnetic compatibility: Limits - Limitation of voltage changes voltage fluctuations and flicker in public low-voltage supply systems for equipment with rated current \(\leq 75 \mathrm{~A}\) and subject to conditional connection
SI 961 Part 48 - Electromagnetic compatibility: Electromagnetic compatibility (EMC) for (all parts) radio equipment and services
SI 961 Part 48.1 - Electromagnetic compatibility: Electromagnetic compatibility (EMC) for radio equipment and services - Common technical requirements
SI 61000 Part 3.12 - Electromagnetic compatibility: Limits - Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current \(>16\) A and \(\leq 75\) A per phase
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

\section*{ATTACHMENT TO NATIONAL DIFFERENCE}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
Israeli Laws, Regulations and documents \\
Electricity Law, 1954, with its Regulations and updates \\
Consumer Protection Order (Marking of goods), 1983, Kovetz HaTakanot 4465 dated 1983-02-24, with its updates \\
Electricity Regulations (Earthings and protective means against electrification for voltages up to \(1,000 \mathrm{~V}\)), 1991 , with their updates \\
Energy Sources Regulations (Maximum electrical power in standby mode for domestic and office electrical appliances), 2011, with its updates \\
European Standards \\
EN 301489 (all parts) - Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services
\end{tabular} & -- \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
ATTACHMENT TO TEST REPORT \\
IEC 60950-1 with A1: 2009 and A2:2013 \\
JAPAN NATIONAL DIFFERENCES \\
Information technology equipment - Safety - Part 1: General requirements
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Differences according to : J60950-1 (H29)} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{Copyright © 2017 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved.} \\
\hline & National Differences & & -- \\
\hline 1.2.4.1 & \begin{tabular}{l}
Add the following new notes. \\
Note: Even if the equipment is designed as Class I, the equipment is regarded as CLASS OI EQUIPMENT (see 1.2.4.3A) when 2-pin adaptor with earthing lead wire or cord set having 2-pin plug with earthing lead wire is provided or recommended.
\end{tabular} & Class I equipment & P \\
\hline 1.2.4.3A & \begin{tabular}{l}
Add the following new clause. \\
1.2.4.3A CLASS OI EQUIPMENT \\
Equipment having attachment plug without earthing blade, where protection against electric shock is achieved by: \\
- using BASIC INSULATION, and \\
- providing either of the following a) or b) in order to connect those conductive parts that might assume a HAZARDOUS VOLTAGES in the event of BASIC INSULATION fault to the PROTECTIVE EARTHING CONDUCTOR in the building wiring. \\
a) Provision of 2 -pin plug with earthing lead including the condition of that 2-pin adaptor with earthing lead wire is provided or recommended. \\
b) Provision of an independent earthing terminal, when 2 -core mains cord (without earthing conductor) is used. \\
Note - Class Ol equipment may have a part constructed with Double Insulation or Reinforced Insulation.
\end{tabular} & Added & N/A \\
\hline 1.3.2 & \begin{tabular}{l}
Add the following notes after first paragraph: \\
Note 1 Transportable or similar equipment that are relocated frequently for intended usage should not be designed as Class I or Class 01 equipment unless it is intended to be installed by service personnel. Note 2 Considering wiring circumstance in Japan, equipment intended to be installed where the provision for earthing connection is unlikely should not be designed as Class I or Class 01 equipment unless it is intended to be installed by service personnel.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Japan. & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 1.5.1 & \begin{tabular}{l}
Replace the first paragraph with the follows: \\
Where safety is involved, components shall comply either with the requirements of this standard, with the safety aspects of the relevant JIS component standard, or IEC component standards, or components shall have equivalent to or better properties than these. \\
Replace Note 1 with the following: \\
Note 1 Components complying with the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance is regarded to have equivalent to or better performance. Note 2 JIS or an IEC component standard is considered relevant only if the component in question clearly falls within its scope. \\
Add the following after the last paragraph: \\
For an appliance connector that is able to fit with appliance inlet compatible with the standard sheet of IEC 60320-1 or JIS C 8283-1, the size of the connector shall comply with relevant standard sheet of IEC 60320-1 or JIS C 8283-1. A power supply cord set complying with JIS C 8286 is regarded to comply with this requirement. \\
Note 3 A power supply cord set provided with appliance connector that is able to fit with appliance inlet compatible with the standard sheet of IEC 60320-1 or JIS C 8283-1 should comply with JIS C 8286.
\end{tabular} & Component complied with the relevant IEC standard. & P \\
\hline 1.5.2 & \begin{tabular}{l}
Add the following Note 2 after the 4th dashed paragraph: \\
Note 2 See 1.7.5A when Type C. 14 appliance coupler rated 10 A per JIS C 8283-1 is used with an equipment rated not more than 125 V and rated more than 10 A .
\end{tabular} & Complied & P \\
\hline 1.5.5 & \begin{tabular}{l}
Add the following Note after the last paragraph: \\
NOTE An interconnection cord sets provided with interconnecting coupler for mains supply complying with JIS C 8283-2-2 should comply with JIS C 8286.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Japan. & P \\
\hline 1.5.9.1 & \begin{tabular}{l}
Add the following in the last of NOTE 1. \\
Gas discharge tube connected in series with VDR may be used.
\end{tabular} & No such device used & N/A \\
\hline 1.7 & \begin{tabular}{l}
Replace EE. 2 and EE. 4 with the following: \\
JA. 1 Shredder warning \\
JA. 3 Shredder power disconnection
\end{tabular} & See below & P \\
\hline 1.7.1.2 & \begin{tabular}{l}
Replace first and second dashed paragraphs with the followings: \\
- manufacturer's or responsible company's name or trade-mark or identification mark; \\
- manufacturer's or responsible company's model identification or type reference;
\end{tabular} & Complied & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 1.7.2.1 & Add the following after the second paragraph. Instruction or equipment marking regarding safety shall be written in Japanese unless otherwise permitted in this standard. & The manufacturer commits to fulfil the requirement when the product will be sold in Japan. & P \\
\hline 1.7.2.5 & Replace the last sentence with the following: An acceptable marking for an electric shock hazard (6.2.4 of JIS S 0101). & Replaced & N/A \\
\hline 1.7.5 & \begin{tabular}{l}
Replace the second paragraph with the following. \\
Socket-outlets conforming to JISC8282-1 are examples of standard power supply outlets.
\end{tabular} & No power outlet. & N/A \\
\hline 1.7.5A & \begin{tabular}{l}
Add the following new clause after 1.7.5. \\
1.7.5A Power supply cord set If appliance coupler according to IEC60320-1, C.14(rated current: 10A) is used in equipment whose rated voltage is less than 125 V and rated current is over 10A, the following instruction or equivalent shall be described in the operating instruction. \\
" Use only designated cord set attached in this equipment" \\
Example in Japanese: \\
 \\
If appliance coupler is used for connection to the mains and if the cord set is not provided within the package for the equipment, suitable information regarding to the cord set shall be described in the operating instruction \\
Note Since the combination of appliance inlet with earthing pin and two-core cord set (without earthing conductor) is special, the cord set should be attached in the equipment and the operating instruction should provide the information that the cord set is exclusively used with the equipment and not allowed to use with other equipment.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Japan. & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950＿1G ATTACHMENT} \\
\hline Clause & Requirement＋Test & Result－Remark & Verdict \\
\hline 1．7．14A & \begin{tabular}{l}
Add the following new clause after 1．7．14． \\
1．7．14A Marking for CLASS OI EQUIPMENT \\
For CLASS OI EQUIPMENT，the following or equivalent instructions shall be marked． \\
－the following instruction shall be marked on the mains plug or on the visible place of the main body \\
＂Provide an earthing connection＂ \\
Example in Japanese： \\
＂必ず接地接続を行ってくだざい。＂ \\
－the following instruction shall be marked on the visible place of the main body or written in the operating instructions： \\
＂Provide an earthing connection before the mains plug is connected to the mains．And，when disconnecting the earthing connection，be sure to disconnect after pulling out the mains plug from the mains．＂ \\
Example in Japanese： \\

\end{tabular} & Class I equipment & N／A \\
\hline 1．7．14B & \begin{tabular}{l}
Add the following new clause after 1．7．14A \\
1．7．14B Protective earthing conductor used for CLASS OI EQUIPMENT \\
For CLASS OI EQUIPMENT provided with independent main protective earthing terminal，where the cord for the protective earthing connection is not provided within the package for the equipment，the suitable information for the protective earthing connection shall be provided in the operating instruction．（See 2．6．3．2）
\end{tabular} & Class I equipment & N／A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 2.1.1.1 & \begin{tabular}{l}
Replace item b) of 2.1.1.1 with the following. \\
b) A test with the test finger, Figure 2A, which shall not contact parts described above when applied to openings in the ENCLOSURES after removal of parts that can be detached by an OPERATOR, including fuseholders, and with OPERATOR access doors and covers open. It is permitted to leave lamps in place for this test. Connectors that can be separated by an OPERATOR, other than those complying with JIS C 8303 or JIS C 8285 or IEC 60309 series or JIS C 8283 series or IEC 60320 series, shall also be tested during disconnection. But even if the connector does not comply with these standards, the one having equivalent to or better performance need not be tested during disconnection. \\
Note 4 Connectors complying with Appendix 4 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance is regarded to have equivalent to or better performance.
\end{tabular} & Complied & P \\
\hline 2.5 & Replace "IEC 60730-1" with "JIS C 9730-1" (in item b)). & Replaced. & P \\
\hline 2.6.2 & & Deleted & N/A \\
\hline 2.6.3.2 & \begin{tabular}{l}
Add the following after the first paragraph. \\
However where the single core conductor is used for protective earthing lead or earthing cord for CLASS OI EQUIPMENT, either of the following condition shall be met. \\
- Use of annealed copper wire with 1.6 mm diameter or corrosion-inhibiting metal wire having equivalent to or more strength and thickness. \\
- Single core cord or single core cabtire cable with \\
\(1.25 \mathrm{~mm}^{2}\) or more cross-sectional area
\end{tabular} & Class I equipment & N/A \\
\hline 2.6.3.5 & Add the following after the first paragraph. However this requirement does not apply to internal conductor of the cord set that is covered by the sheath of mains cord and is formed together with mains plug and appliance connector. & Added. & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 2.6.4.2 & \begin{tabular}{l}
Replace the first paragraph with the following. \\
Equipment required to have protective earthing shall have a main protective earthing terminal. For equipment with a DETACHABLE POWER SUPPLY CORD, the earthing terminal in the appliance inlet is regarded as the main protective earthing terminal. However, for CLASS 01 EQUIPMENT provided with the separate main protective earthing terminal other than appliance inlet, the separate main protective earthing terminal may be treated as mains protective earthing terminal.
\end{tabular} & Approved appliance inlet used & P \\
\hline 2.6.5.4 & \begin{tabular}{l}
Replace the first sentence with the following. \\
Protective earthing connections of CLASS I EQUIPMENT shall make earlier and break later than the supply connections in each of the following: \\
Add the following after last paragraph: \\
Note For CLASS OI EQUIPMENT,1.7.14A is applied instead of this requirement.
\end{tabular} & Complied & P \\
\hline 2.6.5.8A & \begin{tabular}{l}
Add the following new clause after 2.6.5.8 \\
2.6.5.8A Earthing of CLASS OI EQUIPMENT \\
Plugs with a lead wire for earthing shall not be used for equipment having a rated voltage exceeding 150V. \\
For plugs with a lead wire for earthing, the lead wire shall not be earthed by a clip. \\
CLASS OI EQUIPMENT shall be provided with an earthing terminal or lead wire for earthing in the external location where easily visible.
\end{tabular} & Added & N/A \\
\hline 2.7.6 & Replace "ISO 3864, No. 5036" with "6.2.4 of JIS S 0101". & Replaced & N/A \\
\hline 2.10.3.1 & \begin{tabular}{l}
Replace the 8th paragraph with the following \\
The above minimum CLEARANCE for connectors do not apply to connectors that comply with JIS C 8285, IEC60309 series of standards, JIS C 8283 series of standards, IEC60320 series of standards, JIS C 8303, or even if it does not comply with the above standards but the one having equivalent to or better performance and dimension which comply with JIS C 8283 series of standards, JIS C 8303 or IEC 603092. \\
Note Connectors complying with Appendix 4 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance is regarded to have equivalent to or better performance.
\end{tabular} & Replaced & P \\
\hline \[
\begin{array}{|l|}
\hline 2.10 .3 .2 \\
\text { Table 2J }
\end{array}
\] & In Japan, the value of the main power supply transient voltage for the nominal ac main power supply voltage of 100 V is determined by applying the row of AC main power supply voltage 150 V . & Considered & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 2.10.4.3 & \begin{tabular}{l}
Replace the 6th paragraph with the following The above minimum CREEPAGE DISTANCE for connectors do not apply to connectors that comply with JIS C 8285, IEC60309 series of standards, JIS C 8283 series of standards, IEC60320 series of standards, JIS C 8303, or even if it does not comply with the above standards but the one having equivalent to or better performance and dimension which comply with JIS C 8283 series of standards, JIS C 8303 or IEC 60309-2. \\
Note Connectors complying with Appendix 4 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance is regarded to have equivalent to or better performance.
\end{tabular} & Replaced & P \\
\hline 2.10 .9 & Replace "1.4.5" in 3rd paragraph with "1.4.12". & Replaced & N/A \\
\hline 3.2.3 & \begin{tabular}{l}
Add the following after the third paragraph. \\
Table 3A applies when cables complying JIS C 3662 series of standards or JIS C 3663 series of standards are used. In case of other cables, cable entries shall be so designed that the cable could be fitted in a conduit.
\end{tabular} & Added & N/A \\
\hline 3.2.4 & \begin{tabular}{l}
Add the following as 4th dashed paragraph. \\
- be so constructed that mechanical stress shall not transmit to the soldering part of inlet terminal during insertion or removal of the connector except that the body of the inlet is secured and is secured not only soldering.
\end{tabular} & Complied & P \\
\hline 3.2.5.1 & \begin{tabular}{l}
Add the following after Note 3: \\
Note 4 In Japan, mains cords having equivalent to or better electro-mechanical and fire safety performance as above and complying with Appendix 1 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance can be used. \\
Replace the paragraph after Note 3 with the following. \\
For equipment required to have protective earthing, a PROTECTIVE EARTHING CONDUCTOR shall be included in the MAINS SUPPLY cord except for CLASS OI EQUIPMENT having separate protective earthing conductor from mains cord. \\
Add the following after the second paragraph after Note 3: \\
Note 5 For the cross-sectional area of mains cord described in Note 4, relevant Japanese wiring regulation can be applied.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in Japan & P \\
\hline
\end{tabular}

Page 37 of 55
Report No.: CBS2108WDG0169-2
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 4.4 .2 & \begin{tabular}{l}
Replace the paragraph with the following: \\
HOUSEHOLD AND HOME/OFFICE \\
DOCUMENT/MEDIA SHREDDERS shall also \\
comply with Annex JA.
\end{tabular} & Not such equipment & N/A \\
\hline 4.5 .3 & \begin{tabular}{l}
Add the following note to footnote b) of Table 4B: \\
NOTE In case no data for the material is available, \\
Appendix 4, 1. (1). b. 3 of the Interpretation on the \\
Ministerial Ordinance stipulating Technical \\
Specifications for Electrical Appliances is regarded \\
as maximum temperature limit of the material.
\end{tabular} & Added. & P \\
\hline 5.1.3 & \begin{tabular}{l}
Add a note after the first paragraph as follows: \\
Note - Attention should be drawn to that majority of \\
three-phase power system in Japan is of delta \\
connection, and therefore, in that case, test is \\
conducted using the test circuit from IEC 60990, \\
figure 13.
\end{tabular} & Not three-phase power system & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{12}{*}{5.1.6} & \multicolumn{4}{|l|}{Replace Table 5A. as follows} & \multirow[t]{13}{*}{P} \\
\hline & Type of equipment & Terminal A of measuring instrument connected to: & Maximum TOUCH CURRENT mA r.m.s. \({ }^{\text {a }}\) & & \\
\hline & ALL equipment & Accessible parts and circuits not connected to protective earth \({ }^{b}\) & 0,25 & - & \\
\hline & HAND-HELD & Main protective earthing terminal of CLASS I EQUIPMENT & 0,75 & - & \\
\hline & & Main protective earthing terminal of CLASS 0 I EQUIPMENT & 0,5 & - & \\
\hline & MOVABLE (other than HAND_HELD, but including & Main protective earthing terminal of CLASS I EQUIPMENT & 3,5 & - & \\
\hline & TRANSPORTABLE EQUIPMENT) & Main protective earthing terminal of CLASS 0 I EQUIPMENT & 1.0 & - & \\
\hline & STATIONARY, PLUGGABLE TYPE A & Main protective earthing terminal of CLASS I EQUIPMENT & 3,5 & - & \\
\hline & & Main protective earthing terminal of CLASS 0 I EQUIPMENT & 1,0 & - & \\
\hline & ALL other STATIONARY EQUIPMENT & Main protective earthing terminal of CLASS I EQUIPMENT & \[
3.5
\] & \(5 \%\) of input current & \\
\hline & \begin{tabular}{l}
conditions of 5.1.7 \\
- subject to the conditions of 5.1.7
\end{tabular} & Main protective earthing terminal of CLASS 0 I EQUIPMENT & \[
1.0
\] & & \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
a If peak values of TOUCH CURRENT are measured, the maximum values are obtained by multiplying the r.m.s.values in the table by 1,414 . \\
b Some unearthed accessible parts are covered in 1.5.6 and 1.5.7 and the requirements of 2.4 apply. These may be different from those in 5.1.6.
\end{tabular}} & \\
\hline Annex G & \multicolumn{2}{|l|}{\begin{tabular}{l}
Replace the paragraph before Table G. 2 with the following \\
The above minimum CREEPAGE DISTANCES for connectors do not apply to connectors that comply with JIS C 8285, IEC60309 series, JIS C 8283 series, IEC60320 series, JIS C 8303, and Appendix 4 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance in which dimension is comply with JIS C 8283 series, JIS C 8303 or IEC 60309-2.
\end{tabular}} & \multicolumn{2}{|l|}{Replaced.} & \\
\hline
\end{tabular}

Page 39 of 55
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \begin{tabular}{l}
Annex V \\
V.1
\end{tabular} & \begin{tabular}{l}
Replace "3.1.2"in the first line of V.1 with "312" in the \\
first line.
\end{tabular} & Replaced. & P \\
\hline \begin{tabular}{l}
Annex W \\
W. 1
\end{tabular} & \begin{tabular}{l}
Replace the third sentence in the first paragraph with \\
the following: \\
Floating circuits can exist in CLASS I EQUIPMENT, \\
CLASS 0I EQUIPMENT and earthed circuits can \\
exist in CLASS II EQUIPMENT.
\end{tabular} & Replaced. & N/A \\
\hline Annex BB & This annex is not applicable. & Replaced. & N/A \\
\hline \begin{tabular}{l}
Annex CC \\
CC.2
\end{tabular} & \begin{tabular}{l}
Replace the third dashed paragraph with the \\
following: \\
-10 000 cycles of turning enable on and off with the
\end{tabular} & \begin{tabular}{l}
Input connected to a capacitor rated \\
i25 uF \(\pm 10\) uF and shorting the output;
\end{tabular} & Added. \\
\hline CC.3 & \begin{tabular}{l}
Add note at end of CC.3: \\
Note: The fast blow fuse should be the one \\
complying with JIS C 6575-2.
\end{tabular} & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multirow[t]{19}{*}{CC. 4} & \multirow[t]{2}{*}{Replace the 2nd dashed paragraph with the} & \multirow[t]{19}{*}{Replaced} & \multirow[t]{19}{*}{N/A} \\
\hline & & & \\
\hline & - 10000 cycles of turning enable on and off with a \(100 \Omega \pm 5 \Omega\) resistor and a & & \\
\hline & \(425 \mathrm{uF} \pm 10 \mathrm{uF}\) capacitor in parallel with the output; & & \\
\hline & \multirow[t]{2}{*}{Replace the 4th dashed paragraph with the following: - 10000 cycles of turning enable on and off with the input connected to a capacitor rated} & & \\
\hline & & & \\
\hline & Replace the 5th dashed paragraph with the following: & & \\
\hline & - 10000 cycles of turning the input pin on and off with a capacitor rated \(425 \mathrm{uF} \pm 10 \mathrm{uF}\) connected to the input supply while keeping enable active and shorting the output; & & \\
\hline & Replace the 6th dashed paragraph with the following: & & \\
\hline & - 10000 cycles of turning the input pin on and off with an ferrite-core inductor having & & \\
\hline & \(350 \mathrm{mH} \pm 10 \mathrm{mH}\) inductance at 1 kHz and less than \(1 \Omega\) d.c. resistance connected to the & & \\
\hline & input supply and return while keeping enable active and shorting the output; & & \\
\hline & Replace the 10th dashed paragraph with the & & \\
\hline & following: & & \\
\hline & -3 cycles of exposing the device (not energized) to & & \\
\hline & \(70^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) for 24 h ; followed by at least 1 h at room ambient; followed by at least 3 h at & & \\
\hline & \(-30^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\); followed by 3 h at room ambient; & & \\
\hline & Replace the 11th dashed paragraph with the following: & & \\
\hline & -10 cycles of exposing the device (while energized) to \(50^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}\) for 10 min ; followed by 10 min at \(0^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) with a 5 min period of transition from one state to the other; & & \\
\hline Annex EE & Replace Annex EE with the following Annex JA. & & N/A \\
\hline & \begin{tabular}{c}
Annex JA \\
(normative)
\end{tabular}
Document shredding mac & hines & \\
\hline & HOUSEHOLD AND HOME/OFFICE DOCUMENT/ME additionally comply with the requirements of this anne & DIA SHREDDERS shall & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950＿1G ATTACHMENT } \\
\hline Clause & Requirement＋Test & Result－Remark & Verdict \\
\hline
\end{tabular}
JA． 1 Markings and instructions
The symbol（JIS S \(0101: 2000,6.2 .1\) ）and the following precautions for use shall
be marked on readily visible part adjacent to document feed opening．The marking
shall be clearly legible，permanent，and easily discernible；
子子供が使用することによって，傷害などの危害が発生するおそれがある。；
（that use by an infants／children may cause a hazard of injury etc．）
文書投入口に手を触れることによって，細断機構に引き込まれるおそれがある。；
（that a hand can be drawn into the mechanical section for shredding when touching the （that a hand can be drawn into the mechanical section for shredding when touching the document－slot）
－文書投入口に衣類が触れることによって，細断機構に引き込まれるおそれがある。； （that clothing can be drawn into the mechanical section for shredding when touching the document－slot）
－文書投入口に髪の毛が触れることによって，細断機構に引き込まれるおそれがある。； （that hairs can be drawn into the mechanical section for shredding when touching the document－slot）
－in case of equipment incorporating a commutator motor，
可燃性ガスを噴射することによって引火又は爆発するおそれがある。 （that equipment may catch fire or explode by spraying of flammable gas．）

\section*{JA． 2 Inadvertent reactivation}

Any safety interlock that can be operated by means of the test finger，Figure JA．1，is considered to be likely to cause inadvertent reactivation of the hazard．

Compliance is checked by inspection and，where necessary，by a test with the test finger，Figure JA． 1.

\section*{JA． 3 Disconnection from the mains supply}

Document shredding machines shall incorporate an isolating switch complying with sub－clause 3．4．2 as the device disconnecting the power of hazardous moving parts． For this switch，two－position（single－use）switch or multi－position（multifunction）switch （e．g．，slide switch）may be used．
If two－position switch，the positions for＂ON＂and＂OFF＂shall be indicated in accordance with sub－clause 1．7．8．If multi－position switch，the position for＂OFF＂shall be indicated in accordance with sub－clause 1．7．8 and other positions shall be indicated with proper terms or symbols．

Compliance is checked by inspection．
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}

\section*{JA. 4 Protection against hazardous moving parts}

Any warning shall not be used instead of the structure for preventing access to hazardous moving parts.
Document shredding machines shall comply with the following requirements. Insert the test finger, Figure JA.1, into all openings in MECHANICAL ENCLOSURES without applying appreciable force. It shall not be possible to touch hazardous moving parts with the test finger. This consideration applies to all sides of MECHANICAL ENCLOSURES when the equipment is mounted as intended. Before testing with the test finger, remove the parts detachable without a tool.

Insert the wedge-probe, Figure JA.2, into the document-slot. And, against all directions of openings, if straight-cutting type, a force of 45 N shall apply to the probe, and 90 N if cross-cutting type. In this case, the weight of the probe is to be factored into the overall applied force. Before testing with the wedge-probe, remove the parts detachable without a tool. It shall not be possible to touch any hazardous moving parts, including the shredding roller or the mechanical section for shedding, with the probe.

Figure JA. 1 Test finger
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test \(\quad\) Result - Remark & Verdict \\
\hline & \begin{tabular}{l}
Note 1 - The thickness of the probe varies linearly, with slope changes at the respective points shown in the table. \\
Note 2 -The allowable dimensional tolerance of the probe is;
\[
\begin{aligned}
& \text { for } \leq 25 \mathrm{~mm}:+/-0.13 \mathrm{~mm} \\
& \text { for }>25 \mathrm{~mm} \text { : +/- } 0.3 \mathrm{~mm} \text {. }
\end{aligned}
\] \\
Figure JA. 2 Wedge-probe
\end{tabular} & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
J3000 (H25) \\
Special National conditions, National deviation and other information according to \\
MITI Ordinance No. 85.
\end{tabular} & - \\
\hline 1 & \begin{tabular}{l}
General requirement \\
When equipment provides with appliance inlet \\
complying with JIS C 8283-1 (2008), soldered parts \\
of appliance inlet is not applied by force during insert \\
or removal of connector. \\
This is not applied when inlet body is fixed \\
itself and not fixed by solder.
\end{tabular} & \begin{tabular}{l}
Appliance inlet is fixed by \\
adequate mechanical \\
construction, not rely on \\
soldering
\end{tabular} \\
& \begin{tabular}{l}
Requirement for equipment
\end{tabular} & P \\
\hline 2 & \begin{tabular}{l}
Electric heater, and the matches that are connected \\
in parallel to power regulation diode, and that there is \\
no abnormality in a state of being opened diode 1. \\
Compliance is checked by the following.
\end{tabular} & Not such equipment
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multirow[b]{2}{*}{3.1} & & & \\
\hline & To be used for electric freezer Electric Cooling machines, electric washing machine, or electric refrigerator " & Not such equipment & N/A \\
\hline & To be used for electricity Freezer hood, electric fan, electric cooling machines, electric washing machine, or electric refrigerator & Not such equipment & N/A \\
\hline & Due to malfunction of the capacitor, which are housed to prevent the spread of flame or melt, the outer shell of metal or ceramic. However, the shell, there may be openings for connecting wires to the motor capacitor. & Not such equipment & N/A \\
\hline & Due to malfunction of the capacitor, which are housed to prevent nucleic acid melt or flame, the outer metal or ceramic. However, the shell, there may be openings for connecting wires to the motor capacitor. & Not such equipment & N/A \\
\hline & In this case, the expression "are housed in a ceramic shell or metal" is housed case ceramic (inner shell) metal or prevent the diffusion of the melt flame or means of the shell except the capacitor touches the test finger even if there to within 50 mm of the capacitor is non-metallic section that refers to, housed along with capacitor not specified JIS C 4908 (2007) in the case of metal or ceramic thereof, and the melt or flame shall be deemed to prevent it from spreading. & Not such equipment & N/A \\
\hline & No non-metallic materials within 50 mm from capacitor surface & Not such equipment & N/A \\
\hline & Non-metallic material with 50 mm from capacitor surface comply with needle frame test of JIS 93351(2003), Annex E & Not such equipment & N/A \\
\hline & Non-metallic material with 50 mm from capacitor surface comply with V-1 test of JIS C 60965-1110(2006) & Not such equipment & N/A \\
\hline 3.2 & \begin{tabular}{l}
Plug directly inserted to outlet used refrigerator or electric freezer. \\
- Shall comply with - Face contact with outlet shall have CTI with more than 400 according to JIS C 2134(2007) or \\
- Supporting material of blades shall comply with glow wire test by temperature of \(750^{\circ} \mathrm{C}\) according to JIS C 60695-2-11(2004) or JIS C 60695-2-12(2004). \\
Materials having glow wire frame temperature of \(775^{\circ} \mathrm{C}\) are acceptable.
\end{tabular} & Not such equipment & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{2}{|c|}{ ATTACHMENT TO NATIONAL DIFFERENCE } \\
\hline \begin{tabular}{l}
National differences Korean \\
IEC 60950-1, 2 2nd edition + Am 1
\end{tabular} & - \\
\hline 1.5 .101 & \begin{tabular}{l}
Plugs for the connection of the apparatus to the \\
supply mains shall comply with the Korean \\
requirement (KSC 8305).
\end{tabular} & \begin{tabular}{l}
The manufacturer commits to \\
fulfil the requirement when the \\
product will be sold in Korean.
\end{tabular} & P \\
\hline 8 & \begin{tabular}{l}
EMC \\
The apparatus shall comply with the relevant CISPR \\
standards.
\end{tabular} & \begin{tabular}{l}
The manufacturer commits to \\
fulfil the requirement when the \\
product will be sold in Korean.
\end{tabular} & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{National differences for Saudi Arabia} \\
\hline Marking in Arabic or/and English & The manufacturer commits to fulfill the requirement when the product will be sold in Saudi Arabia & P \\
\hline Instructions shall be in Arabic and English & The manufacturer commits to fulfill the requirement when the product will be sold in Saudi Arabia & P \\
\hline Voltage input should including 220 V or 380 V & The EUT is operated at 100240 Vac voltage, it includes 220V & P \\
\hline Frequency input should including 60Hz & The EUT is operated at \(50 / 60 \mathrm{~Hz}\) frequency, it includes 50 Hz & P \\
\hline Country of origin marked on the product & MADE IN CHINA & P \\
\hline Plugs shall comply with SASO 2203: 2018 / SASO 2204: 2003 & The manufacturer commits to fulfill the requirement when the product will be sold in Saudi Arabia & P \\
\hline
\end{tabular}

Page 48 of 55
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{3}{|c|}{ ATTACHMENT TO NATIONAL DIFFERENCE } \\
\hline \begin{tabular}{l}
National differences Ukraine \\
IEC 60950, 3rd edition
\end{tabular} & \\
\hline 1.4 .5 & \begin{tabular}{l}
In Ukraine the NOMINAL VOLTAGE is 220 V for \\
monoplanes or 380 V for three-phase supply.
\end{tabular} & \begin{tabular}{l}
The EUT is operated at 100- \\
240Vac voltage
\end{tabular} & P \\
\hline 1.5 .8 & \begin{tabular}{l}
In Ukraine the components connected between \\
phase and earthing or between phase and neutral \\
terminal shall be calculated for the voltage between \\
phases.
\end{tabular} & No such component & N/A \\
\hline 1.7 .2 & \begin{tabular}{l}
In Ukraine for the APPARATUS of I CLASS the \\
necessity of its obligatory earthing shall be indicated \\
in the manuals.
\end{tabular} & \begin{tabular}{l}
The manufacturer commits to \\
fulfil the requirement when the \\
product will be sold in Ukraine.
\end{tabular} & P \\
\hline 2.3.3 & \begin{tabular}{l}
In Ukraine the method b) is not used.
\end{tabular} & N/A \\
\hline 6.2 .2 & \begin{tabular}{l}
In Ukraine the both tests in 6.2.2.1 and 6.2.2.2 are \\
applied.
\end{tabular} & No TNV circuit. & N/A \\
\hline 6.2 .2 .1 & \begin{tabular}{l}
In Ukraine in 6.2.1 a) is used Uc 3,5 kV.
\end{tabular} & No TNV circuit. & \(\mathrm{N} / \mathrm{A}\) \\
\hline 6.2 .2 .2 & \begin{tabular}{l}
In Ukraine in 6.2.1 a) is used 3,0 kV for telephones \\
and headsets and 2,5 kV for other equipment and \\
in 6.2.1 b) and c) is used 1,5 kV.
\end{tabular} & No TNV circuit. \\
\hline Annex N & \begin{tabular}{l}
In Ukraine in 6.2.1 a) is used 3,0 kV for telephones \\
and headsets and 2,5 kV for other equipment, and \\
in 6.2.1 b) and c) is used 1,5 kV.
\end{tabular} & No TNV circuit. & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
ATTACHMENT TO TEST REPORT IEC 60950-1 with A1: 2009 and A2:2013 U.S.A. NATIONAL DIFFERENCES \\
Information technology equipment - Safety - Part 1: General requirements
\end{tabular}} \\
\hline Differences according to.....................: & UL 60950-1-07(Second Edition) + A1: 2011 + A2: 2014 \\
\hline Attachment Form No.: & US_ND_IEC60950_1G \\
\hline Attachment Originator........................: & UL \\
\hline Master Attachment..............................: & Date 2014-07 \\
\hline Copyright © 2014 IEC System for Conf Geneva, Switzerland. All rights reserved & formity Testing and Certification of Electrical Equipment (IECEE), d. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Special national conditions} & -- \\
\hline 1.1.1 & All equipment is to be designed to allow installation in accordance with the National Electrical Code (NEC), ANSI/NFPA 70, the Canadian Electrical Code (CEC), Part I, CAN/CSA C22.1, and when applicable, the National Electrical Safety Code, IEEE C2. Also, unless marked or otherwise identified, installation is allowed per the Standard for the Protection of Electronic Computer/Data-Processing Equipment, ANSI/NFPA 75. & Complied & P \\
\hline 1.1.2 & Baby monitors are required to additionally comply with ASTM F2951, Consumer Safety Specification for Baby Monitors. & Not such equipment & N/A \\
\hline 1.4.14 & For Pluggable Equipment Type A, the protection in the installation is assumed to be 20A. & considered & P \\
\hline 1.5.5 & \begin{tabular}{l}
For lengths exceeding 3.05 m , external interconnecting flexible cord and cable assemblies are required to be a suitable cable type (e.g., DP, CL2) specified in the NEC. \\
For lengths 3.05 m or less, external interconnecting flexible cord and cable assemblies that are not types specified in the NEC are required to have special construction features and identification markings.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in United States of America & P \\
\hline 1.7.1 & \begin{tabular}{l}
Equipment for use on a.c. mains supply systems with a neutral and more than one phase conductor (e.g. 120/240 V, 3-wire) require a special marking format for electrical ratings. \\
A voltage rating that exceeds an attachment plug cap rating is only permitted if it does not exceed the extreme operating conditions in Table 2 of CAN/CSA C22.2 No. 235, and if it is part of a range that extends into the Table 2 "Normal Operating Conditions." Likewise, a voltage rating shall not be lower than the specified "Normal Operating Conditions," unless it is part of a range that extends into the "Normal Operating Conditions."
\end{tabular} & Considered & P \\
\hline 1.7.7 & Wiring terminals intended to supply Class 2 outputs in accordance with the NEC or CEC Part 1 shall be marked with the voltage rating and "Class 2" or equivalent. The marking shall be located adjacent to the terminals and shall be visible during wiring. & No such terminal & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 2.5 & Where a fuse is used to provide Class 2, Limited Power Source, or TNV current limiting, it shall not be operator-accessible unless it is not interchangeable. & No such device used & N/A \\
\hline 2.6 & Equipment with isolated ground (earthing) receptacles are required to comply with NEC 250.146(D) and CEC 10-112 and 10-906(8). & No such device & N/A \\
\hline 2.7.1 & \begin{tabular}{l}
Suitable NEC/CEC branch circuit protection rated at the maximum circuit rating is required for all standard supply outlets and receptacles (such as supplied in power distribution units) if the supply branch circuit protection is not suitable. \\
Power distribution transformers distributing power at 100 volts or more, and rated 10 kVA or more, require special transformer overcurrent protection.
\end{tabular} & Protection in primary circuits against over currents provided as an integral part of the equipment. & P \\
\hline 3.2 & Wiring methods (terminals, leads, etc.) used for the connection of the equipment to the mains shall be in accordance with the NEC/CEC. & The manufacturer commits to fulfil the requirement when the product will be sold in United States of America & P \\
\hline 3.2.1 & Power supply cords are required to have attachment plugs rated not less than 125 percent of the rated current of the equipment. & The manufacturer commits to fulfil the requirement when the product will be sold in United States of America & P \\
\hline 3.2.1.2 & Equipment connected to a centralized d.c. power system, and having one pole of the DC mains input terminal connected to the main protective earthing terminal in the equipment, is required to comply with special earthing, wiring, marking and installation instruction requirements. & The equipment is not for connection to a d.c. mains supply. & N/A \\
\hline 3.2.3 & Permanent connection of equipment to the mains supply by a power supply cord is not permitted, except for certain equipment, such as ATMs. & Not permanently connected equipment. & N/A \\
\hline 3.2.5 & \begin{tabular}{l}
Power supply cords are required to be no longer than 4.5 m in length. \\
Minimum cord length is required to be 1.5 m , with certain constructions such as external power supplies allowed to consider both input and output cord lengths into the requirement. \\
Flexible power supply cords are required to be compatible with Article 400 of the NEC, and Tables 11 \& 12 of the CEC.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in United States of America & P \\
\hline 3.2.9 & Permanently connected equipment is required to have a suitable wiring compartment and wire bending space. & Not permanently connected equipment. & N/A \\
\hline 3.3 & Wiring terminals and associated spacings for field wiring connections shall comply with CSA C22.2 No. 0. & No wiring terminals & N/A \\
\hline 3.3.3 & Wire binding screws are not permitted to attach conductors larger than 10 AWG (\(5.3 \mathrm{~mm}^{2}\)). & No wiring terminals & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 3.3.4 & Terminals for permanent wiring, including protective earthing terminals, are required to be suitable for U.S./Canadian wire gauge sizes, rated 125 percent of the equipment rating, and be specially marked when specified (1.7.7). & No wiring terminals & N/A \\
\hline 3.3.5 & First column of Table 3E revised to require "Smaller of the RATED CURRENT of the equipment or the PROTECTIVE CURRENT RATING of the circuit under consideration." & No wiring terminals & N/A \\
\hline 3.4.2 & Motor control devices are required for cordconnected equipment with a motor if the equipment is rated more than 12 A , or if the motor has a nominal voltage rating greater than 120 V , or is rated more than \(1 / 3 \mathrm{hp}\) (locked rotor current over 43 A). & No such device & N/A \\
\hline 3.4.8 & Vertically-mounted disconnect switches and circuit breakers are required to have the "on" position indicated by the handle in the up position. & No such Vertically-mounted disconnect switches & N/A \\
\hline 3.4.11 & For computer room applications, equipment with battery systems capable of supplying 750 VA for five minutes are required to have a battery disconnect means that may be connected to the computer room remote power-off circuit. & Not such equipment & N/A \\
\hline 4.3.12 & The maximum quantity of flammable liquid stored in equipment is required to comply with NFPA 30. & No flammable liquids in the equipment. & N/A \\
\hline 4.3.13.5.1 & Equipment with lasers is required to meet the U.S. Code of Federal Regulations 21 CFR 1040 (and the Canadian Radiation Emitting Devices Act, REDR C1370). & No such devices. & N/A \\
\hline 4.7 & For computer room applications, automated information storage systems with combustible media greater than \(0.76 \mathrm{~m}^{3}(27 \mathrm{cu} \mathrm{ft})\) are required to have a provision for connection of either automatic sprinklers or a gaseous agent extinguishing system with an extended discharge. & Not such equipment & N/A \\
\hline 4.7.3.1 & For computer room applications, enclosures with combustible material measuring greater than \(0.9 \mathrm{~m}^{2}\) (10 sq ft) or a single dimension greater than 1.8 m (6 \(\mathrm{ft})\) are required to have a flame spread rating of 50 or less. For other applications, enclosures with the same dimensions require a flame spread rating of 200 or less. & Not such equipment & N/A \\
\hline 4.7.3.1 & Non-metallic enclosures of equipment for use in spaces used for environmental air (plenums) are required to comply with UL 2043. & Not such equipment & N/A \\
\hline Annex H & Equipment that produces ionizing radiation is required to comply with the U.S. Code of Federal Regulations, 21 CFR 1020 (and the Canadian Radiation Emitting Devices Act, REDR C1370). & The equipment don't produces ionizing radiation & N/A \\
\hline \multicolumn{3}{|l|}{OTHER NATIONAL DIFFERENCES} & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline 1.5.1 & \begin{tabular}{l}
Some components and materials associated with the risk of fire, electric shock, or personal injury are required to have component or material ratings in accordance with the applicable national (U.S. and Canadian) component or material requirements. These components include: \\
attachment plugs, battery backup systems, battery packs, cathode ray tubes, circuit breakers, communication circuit accessories, connectors (used for current interruption of non-LPS circuits), cord sets and power supply cords, direct plug-in equipment, electrochemical capacitor modules (energy storage modules with ultracapacitors), enclosures (outdoor), flexible cords and cables, fuses (branch circuit), fuseholders, ground-fault current interrupters, industrial control equipment, insulating tape, interconnecting cables, lampholders, limit controls, printed wiring, protectors for communications circuits, receptacles, solid state controls, supplementary protectors, switches (including interlock switches), thermal cutoffs, thermostats, (multi-layer) transformer winding wire, surge protective devices, tubing, vehicle battery adapters, wire connectors, and wire and cables.
\end{tabular} & The manufacturer commits to fulfil the requirement when the product will be sold in United States of America & P \\
\hline 1.6.1.2 & A circuit for connection to the DC Mains Supply is classified as a SELV Circuit, a TNV-2 Circuit or a Hazardous Voltage Circuit depending on the maximum operating voltage of the supply. This maximum operating voltage shall include consideration of the battery charging "float voltage" associated with the intended supply system, regardless of the marked power rating of the equipment. & The equipment is not for connection to d.c. mains supply. & N/A \\
\hline 2.3.1 & For TNV-2 and TNV-3 circuits with other than ringing signals and with voltages exceeding 42.4 Vpeak or 60 Vd.c., the maximum acceptable current through a 2000 ohm resistor (or greater) connected across the voltage source with other loads disconnected is 7.1 mA peak or 30 mA d.c. under normal operating conditions. & No TNV circuit & N/A \\
\hline 2.3.2.1 & In the event of a single fault between TNV and SELV circuits, the limits of 2.2.3 apply to SELV Circuits and accessible conductive parts. & No TNV circuit & N/A \\
\hline 2.6.2 & Equipment with functional earthing is required to be marked with the functional earthing symbol (IEC 60417-6092). & No functional earthing & N/A \\
\hline 2.6.3.4 & Protective bonding conductors of non-standard protective bonding constructions (e.g., printed circuit traces) may be subjected to the additional limited short circuit test conditions specified. & No such part & N/A \\
\hline 4.2.8.1 & Enclosures around CRTs with a face diameter of 160 mm or more are required to reduce the risk of injury due to the implosion of the CRT. & No such device & N/A \\
\hline
\end{tabular}

Page 53 of 55
Report No.: CBS2108WDG0169-2
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 4.3.2 & Equipment with handles is required to comply with special loading tests. & Two handles provided, applied force 369 N for 1 minute on each handle and no damage after test. & P \\
\hline 4.3.8 & Battery packs for both portable and stationary applications are required to comply with special component requirements. & No such battery used & N/A \\
\hline 5.1.8.3 & Equipment intended to receive telecommunication ringing signals is required to comply with a special touch current measurement tests. & Not connected to telecommunication networks. & N/A \\
\hline 5.3.7 & \begin{tabular}{l}
Internal (e.g., card cage) SELV circuit connectors and printed wiring board connectors that are accessible to the operator and that deliver power are to be overloaded. \\
During abnormal operating testing, if a circuit is interrupted by the opening of a component, the test shall be repeated twice (three tests total) using new components as necessary.
\end{tabular} & Complied & P \\
\hline 6.4 & Equipment intended for connection to telecommunication network outside plant cable is required to be protected against overvoltage from power line crosses in accordance with 6.4 and Annex NAC. & Not connected to telecommunication networks. & N/A \\
\hline Annex EE & UL articulated accessibility probe (Fig EE.3) required for assessing accessibility to document/media shredders instead of the Figure 2A test finger. & Not such equipment & N/A \\
\hline Annex M. 2 & Continuous ringing signals up to 16 mA only are permitted if the equipment is subjected to special installation and performance restrictions. & No phone ringing is generated in the EUT. & N/A \\
\hline Annex NAD & Equipment connected to a telecommunication and cable distribution networks and supplied with an earphone intended to be held against, or in the ear is required to comply with special acoustic pressure requirements. & Not such equipment & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ IEC 60950_1G ATTACHMENT } \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
ATTACHMENT TO TEST REPORT \\
IEC 60950-1 \\
SINGAPORE NATIONAL DIFFERENCES \\
Information technology equipment - Safety - Part 1: General requirements
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Differences according to: Special National Conditions} \\
\hline \multicolumn{4}{|l|}{TRF template used: : IECEE OD-2020-F3, Ed. 1.1} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{lll}
Attachment Form No.: & SG_ND_IEC60950_1G \\
Attachment Originator....................: & Intertek Testing Services (Singapore) Pte Ltd \\
Master Attachment: & \(2021-07-16\)
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Copyright © 2021 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved.} \\
\hline & \multicolumn{2}{|l|}{National Differences} & -- \\
\hline Chapter 7 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Special national conditions (if any) \\
Controlled goods under Consumer Protection (Safety Requirements) Registration Scheme (CPS) are required to be tested to additional requirements stipulated by Enterprise Singapore in Chapter 7 of the CPS information booklet. \\
The CPS information booklet is updated on an ongoing basis. At the point of testing, refer to the latest copy of the CPS information booklet for the minimum edition of standard to apply for testing of products under the CPS scheme and any new requirements. \\
Link to CPS information booklet: \\
https://www.consumerproductsafety.gov.sg/files/cps-info-booklet.pdf
\end{tabular}} & P \\
\hline 3 & All appliances must be tested to \(230 \mathrm{VAC}, 50 \mathrm{~Hz}\). & Test with \(100-240 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}\) & P \\
\hline 4 & \begin{tabular}{l}
Appliance fitted with voltage selector shall be tested as follows: \\
Connect appliance to 230 VAC mains with voltage selector switch to settings not suitable for operation at 230 VAC.
\end{tabular} & Not such equipment & N/A \\
\hline 5 & All appliances (with tropical test requirements in applicable Standards) shall comply with the tropical condition test as stated in the relevant IEC Standards. & Considered & P \\
\hline 6 & All Class I appliances (3-pin mains plug) must be fitted with 3 -pin mains plugs complying with SS 145/SS 472 that are registered with the Authority. & The manufacturer commits to fulfil the requirement when the product will be sold in Singapore & P \\
\hline 7 & \begin{tabular}{l}
a) All Class II appliances must be fitted with 2-pin mains plug complying with EN 50075. \\
b) Class II appliances that are fitted with 3 -pin mains plugs must use plugs that comply with SS 145 and registered with the Authority.
\end{tabular} & Class I equipment & N/A \\
\hline 9 & Detachable power cord set must be listed in the test report critical component list. & The manufacturer commits to fulfil the requirement when the product will be sold in Singapore & P \\
\hline
\end{tabular}

Page 55 of 55
Report No.: CBS2108WDG0169-2
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{IEC 60950_1G ATTACHMENT} \\
\hline Clause & Requirement + Test & Result - Remark & Verdict \\
\hline \multicolumn{4}{|l|}{} \\
\hline 10 & Circuit diagrams must be indicated with component's values for products tested to IEC 60065 and IEC 60950. & Approved power board used & N/A \\
\hline 18 & AC Adaptor incorporated with 13A socket-outlet to be tested to additional tests clauses 13,17 and 18 of SS 246 (till 25/10/2021), or clauses 12.1 \& 12.3 of SS 145 Part 3: 2020. & Not such equipment & N/A \\
\hline 19 & Supplier who is supplying AC adaptors with detachable interchangeable plug pins must include with its products, written instructions to inform customer on the type of detachable interchangeable plug pins that are approved and suitable to use in Singapore. These instructions are to be submitted to the Conformity Assessment Body for verification when applying for Certificate of Conformity. & Not such equipment & N/A \\
\hline 20 & \begin{tabular}{l}
For AC Adaptors supplied together with Personal Mobility Devices: \\
1. Registered Supplier to declare the model of the AC adaptor that is to be used with/ bundled together with the PMDs; \\
2. Registered Supplier to provide valid IEC 60950-1 or IEC 62368-1 test reports for certification and registration of the declared AC adaptor under the CPS scheme; and \\
3. Registered Supplier to provide the UL 2272 test report as supporting document, showing that the listed AC adaptor in the UL 2272 test report is the model declared to be used with/ bundled together with the PMDs.
\end{tabular} & Not such equipment & N/A \\
\hline 21 & CD/ DVD ROMs (used in personal computers) to have test certificate showing that CD/DVD ROM has complied with IEC 60825-1. & Not such equipment & N/A \\
\hline 22 & Modem card incorporated in the personal computer must be tested at set level (sub-clauses 5.1 \& 6 of IEC 60950) or at component level. & Not such equipment & N/A \\
\hline 23 & Powerline Ethernet Adaptor incorporated with 13A socket-outlet, to be tested to additional test clauses \(13,17 \& 18\) of SS 246 (till 25/10/2021), or clauses 13, 17 \& 18 of SS 145 Part 3: 2020. & Not such equipment & N/A \\
\hline 49 & Plasma/LCD display monitor tested to IEC 60950 would require additional test to clauses 9 (related to antenna only), 10.1, 10.2, 10.3 and 12.5 of IEC 60065. & No such equipment & N/A \\
\hline & Other additional requirements which may be included in Chapter 7 of the information booklet in ongoing basis at the time of testing. & & N/A \\
\hline
\end{tabular}

Photos

Main board view - 2

Page 7 of 11
Report No.: CBS2108WDG0169-2

T-con board view - 1

T-con board view - 2

Power board(model MP120DM-18) view - 1

Power board(model MP120DM-18) view - 2

Power board(model MP135TL-2N33-K2) view - 3

Power board(model MP135TL-2N33-K2) view - 4
```

